Искусственный интеллект научился у людей расизму и сексизму |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-04-16 19:00 Анализ корпуса интернет-текстов показал, что искусственный интеллект воспринимает не только формальную структуру языка, но и языковые стереотипы. Принято считать, что искусственный интеллект решает задачи и делает выводы гораздо более рационально, чем человек. Компьютеры обрабатывают огромные объемы информации, их алгоритмы созданы по строгим законам логики и неподвластны эмоциям. Во многих сферах это действительно приносит результаты. Например, суперкомпьютер IBM Watson, основываясь на анализе медицинской литературы, верно поставил диагноз 90% больных раком легких, а врачи-люди во время теста справились с этим лишь в 50% случаев. Однако новые исследования показывают, что и искусственный интеллект не застрахован от «человеческих» ошибок и стереотипов. Причина в том, что многие материалы, с помощью которых ИИ обучается, созданы людьми. Например, «учителями» искусственного интеллекта могут стать обычные пользователи Интернета. Для чего это нужно? Одна из важнейших задач, стоящих перед системами искусственного интеллекта, заключается в том, чтобы компьютер мог воспринимать команды не только на формальных языках (таких как языки программирования), но и на естественном языке – на таком, с помощью которого люди общаются между собой. Это поможет усовершенствовать машинный перевод, работу поисковых систем, автоматическую генерацию текстов и многое другое. Для обучения систем искусственного интеллекта компьютерная лингвистика использует корпусы текстов – большие массивы текстов, подобранных и обработанных по определенным правилам. Интернет – один из самых доступных источников «живого» языка. Поэтому лингвисты активно пользуются интернет-корпусами, в которые включены тексты социальных сетей, блогов, новостных ресурсов. Авторы нового исследования, опубликованного в журнале Science, предположили, что искусственный интеллект не только усваивает структуру естественного языка, но и перенимает особенности семантики, исторически закрепившиеся в языке. Ученые использовали алгоритм самообучения GloVe, работающий подобно тесту подсознательных ассоциаций (implicit-association test). GloVe составляет статистику ассоциативно связанных друг с другом слов: чем чаще два слова встречаются в текстах на сравнительно небольшом расстоянии друг от друга, тем чаще они ассоциируются между собой. Алгоритм проанализировал корпус интернет-текстов из 840 млрд слов. Названия цветов (роза, маргаритка) оказались связаны с положительными понятиями (ласка, любовь), а названия насекомых – с отрицательными (грязь, уродливый). Следующие выводы были не такими безобидными. Совместив корпус с базой имен, часто встречающихся у американцев европейского или африканского происхождения, ИИ выявил: европейцев обычно ассоциируют с такими понятиями, как «семья», «друг», «счастливый», а афроамериканцев – со словами «бедность», «тюрьма», «убийство». Также выяснилось, что мужские имена чаще ассоциируются с понятиями из области карьеры (профессиональный, зарплата), а женские – с семейными (материнство, свадьба). Исследователи показали, что системы искусственного интеллекта не просто фиксируют стереотипы, но и используют их в материалах, которые составлены самим ИИ. Например, Google Translate переводит турецкое гендерно нейтральное местоимение «о» в зависимости от профессии: «o bir doktor» – «он врач», но «o bir hemsire» – «она медсестра». Недавно была создана система искусственного интеллекта, использующая стратегию эволюции. Этот подход позволил быстрее решать задачи, связанные с обучением нейронных сетей. Источник: naked-science.ru Комментарии: |
|