Банки часто оправдывают отказы по кредитам скоринговой системой. По каким критериям банки оценивают скоринговые системы, способные разрушить ваши планы на жизнь? Можно ли обмануть «кредитный детектор»? Корреспондент Банки.ру попыталась проникнуть в некоторые тайны скоринга.
Скоринг — дитя войны
Для скоринговых систем портрет добросовестного заемщика примерно один, и никаких сюрпризов здесь нет: женщины, семейные, люди старше 40 лет, клиенты с высшим образованием, а также с хорошим стажем работы платят лучше остальных заемщиков. На основании анализа статистических данных было установлено, что семейные люди более ответственно подходят к выполнению своих кредитных обязательств и реже допускают просрочки.
В Сбербанке отмечают, что скоринг работает не только с социальными данными. Для оценки могут быть использованы любые данные, характеризующие заемщика: кредитная история, информация о движении по счетам, вкладам и картам, данные из социальных сетей…
Как правило, скоринг используется для расчета лимита кредитования, определения размера процентной ставки, вероятности мошенничества и вероятности социального дефолта по кредиту.
«До того как началась Вторая мировая война, скоринговых систем не было, были андеррайтеры. Эти люди сидели и принимали решения. Обычно в старые времена в банках люди работали всю жизнь. Они обладали опытом — знали, как принимать решения, кому давать, кому не давать кредиты. Классически они смотрели на состав семьи, возраст, пол клиента, его репутацию и принимали решения», — рассказал Банки.ру председатель правления банка «Восточный» Алексей Кордичев.
Потом случилась война. Многие «ушли на фронт и уже не вернулись после войны на работу андеррайтерами. И людей для принятия банковских решений не хватало. Тех, кто раньше работал андеррайтерами и вернулся работать в банки, начали опрашивать, как они принимали решения, записывать. Когда новых людей набирали, их учили, чтобы они смотрели на все эти факторы и по ним начисляли баллы. Так появилась идея скоринга.(Первые системы скоринга появились в американских банках как раз во время Второй мировой войны.)
Интересно, что принцип использования логистической регрессии для кредитного скоринга был позаимствован из медицины — во время войны в английской армии пользовались чем-то подобным для определения вероятности заражения вирусными болезнями, определяя корреляцию между симптомами и фактом заболевания.
Это уже потом баллы научились начислять статистически — наблюдая за корреляцией дефолтов с теми или иными факторами, характеризующими заемщика.
Как отличить хороший скоринг от плохого
Довольно сложно определить, по каким критериям нужно оценивать скоринговые системы. Грубо говоря, как понять, где хорошая, а где плохая?
По мнению заместителя председателя правления АО «РНКО «Фидбэк» Константина Соклакова, качество работы скоринговой системы оценивается в первую очередь по тем параметрам, которые проверяет система: начиная от паспортных данных, ИНН, СНИЛС, дохода, водительского удостоверения и т. д. и заканчивая составом семьи, образованием, наличием непогашенных кредитов и просрочек по ним, а также отслеживанием судимостей и административных правонарушений.
Помимо качественной проработки данных, необходимо обращать внимание на их актуальность.
«Классические критерии оценки скоринга — это процент так называемых ошибок первого и второго рода, то есть число ложноположительных и ложноотрицательных срабатываний. Для кредитного скоринга это процент одобренных кредитов, выданных недобросовестным заемщикам, и процент ошибочных отказов в выдаче ссуды. В обоих случаях банк теряет деньги», — объясняет руководитель направления противодействия мошенничеству центра информационной безопасности компании «Инфосистемы Джет» Алексей Сизов.
Разработчики алгоритмов для скоринговых систем бьются над тем, как сбалансировать эти два параметра.
К другим критериям оценки скоринговых систем специалистами можно отнести скорость работы, количество используемых источников данных, способность системы к самообучению. Но для бизнеса важен только один параметр — сколько денег экономит такая система.
«Скоринг может работать, как магический шар»
Основной способ обхода банковского скоринга стар как мир — это предоставление ложных данных. Чем больше источников данных у скоринговой системы, чем совершеннее алгоритмы, тем сложнее это сделать. «Знание алгоритмов скоринга, конечно, упрощает работу для мошенников», — отмечает Алексей Сизов.
«Однако этих алгоритмов зачастую могут не знать и сами сотрудники банка, потому что часть производителей держат их в секрете. Скоринг может работать, как магический шар. Ему задают вопрос, а затем он выдает ответ — но как именно он это сделал, точно не известно. В одном из банков, занимающихся розничным кредитованием, в рамках расследования массового невозврата ссуд выяснилось, что скоринг из-за сбоя несколько месяцев выдавал только положительные решения. Злоумышленникам не требовалось прилагать особых усилий для обхода системы», — рассказывает Сизов.
Считается, что чем тщательнее настроена система, тем сложнее ее обойти. Некоторые эксперты считают, что в большинстве случаев сделать это просто невозможно.
Банки очень аккуратны в выборе скоринговой системы и, как правило, не берут уже готовую программу, а создают свою собственную. Их опасения можно понять. Например, в объединенных банках «Восточный Экспресс» и «Юниаструм», теперь работающих под брендом «Восточного», доля розничных заявок, проходящих через скоринг, составляет 100%. В ближайшее время кредиты для малого бизнеса там также планируют выдавать с использованием скоринговых оценок. В банке ВТБ тоже все кредитные заявки проходят через скоринговую систему. Скоринговые модели, как внутренние, так и внешние, используются и в процессе принятия решения по всем розничным кредитным продуктам Абсолют Банка.
В Сбербанке используют скоринг для оценки рисков и принятия кредитных решений при рассмотрении всех заявок физических лиц, включая ипотеку. При этом нужно отметить, что скоринговые технологии не исключают экспертную оценку данных. Сбербанк комбинирует скоринговые и экспертные методы оценки заемщика, применяя различные стратегии принятия решений. В целом для оценки кредитного риска Сбербанк использует сотни различных стратегий сбора и анализа данных.
Скоринг — не только для кредитов
Спектр применения скоринговых систем достаточно широк и не ограничивается только кредитными решениями. Скоринговые технологии используются для расчета предодобренных лимитов, изменения лимитов по кредитным картам, истребования проблемной задолженности, обеспечения кибербезопасности, оценки рисков сформированного кредитного портфеля.
В Росэнергобанке используется несколько систем проверки заявок на кредит, включая и статистический скоринг. Безусловно, система помогает выявить сомнительные параметры в заявках, но основной акцент делается на жестких правилах как кредитной истории, так и различных систем предотвращения мошенничества. Процент отказа по статистическому социально-демографическому скорингу составляет не более 2%.
«В настоящее время мы заинтересованы в официальных источниках информации о месте работы клиентов и их уровне дохода (ФНС и пенсионный фонд), а также обязательном для всех участников рынка кредитования механизме ограничения кредитной нагрузки на клиентов с целью снижения кредитных рисков», — рассказал директор департамента розничных кредитных рисков Росэнергбанка Рустам Идрисов.
Росэнегобанк, разумеется, не единственная финансовая организация, которая, помимо скоринга, использует другие системы проверки заявок на кредит.
Например, в Абсолют Банке социально-демографическая, кредитная либо поведенческая оценка заемщика с использованием скоринговых моделей является лишь частью процесса анализа данных по заемщику и принятия решения по его кредитованию.
«Поскольку такие модели определяет лишь вероятность возникновения дефолта на основании ограниченного набора параметров, окончательное решение по заявке (особенно в ипотечном кредитовании) принимается исходя из экспертной оценки всех негативных и компенсирующих факторов, выявленных в ходе андеррайтинга. К числу таких факторов относятся в том числе общий стаж работы и стаж работы на текущем месте работы, размер организации — работодателя заемщика», — комментирует директор департамента кредитования розничного бизнеса Абсолют Банка Елена Ковырзина.
По словам Алексея Сизова из центра информационной безопасности компании «Инфосистемы Джет», основное направление развития скоринга сегодня — алгоритмы самообучения и поведенческого анализа, позволяющие пресекать даже неизвестные до этого момента типы мошенничества. Другое направление развития — подключение к скорингам все новых источников данных, работа с Big Data. Крупные банки для нужд скоринга индексируют не только традиционные базы с информацией по физическим и юридическим лицам, решениям судов, но и социальные сети, форумы. Автоматизированная оценка благонадежности клиента по его интересам во «ВКонтакте» — уже не фантазии, а реальность сегодняшнего дня.
«Будущее банков — автоматизированные комплексы с минимальным участием сотрудников. Это будущее, которое «рисуют» нам ведущие игроки рынка. Дистанционное обслуживание клиентов (интернет-банкинг, мобильный банкинг) развивается наиболее быстро в банковской отрасли — это служит дополнительным толчком для развития и скоринговых систем, адаптации их к новым условиям работы организаций», — заключает заместитель председателя правления АО «РНКО «Фидбэк» Константин Соклаков.
Наталья СТРЕЛЬЦОВА, Banki.ru