Facebook: наблюдение за миром научит машины здравому смыслу |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-03-09 15:58 По мнению Яна Лекуна, главы лаборатории искусственного интеллекта Facebook, следующим шагом в развитии машинного зрения станут компьютеры, которые обучаются в процессе просмотра видео. Пять лет назад наука совершила рывок в точности интерпретации изображений. Лежащая в ее основе технология — искусственные нейронные сети — стала фундаментом нынешнего бума ИИ. С ее помощью Google и Facebook научились делать поиск по фотографиям и распознавать лица. Сейчас машины могут распознать заданный объект на фотографии — к примеру, породу собак или марку автомобиля. При условии, что собрано достаточное количество объектов в каждой категории — не менее тысячи. Можно распознать и более абстрактные категории — пейзажи, закаты, свадьбы или дни рождения. Пять лет назад ученые не знали, как решать такие задачи. Однако, здравым смыслом такие системы пока не обладают, и если подсунуть им изображение необычного предмета и ситуации, которую они никогда не встречали, они не смогут сказать ничего осмысленного. «Один из подходов, которые мы очень хотим попробовать, — дать машинам собрать большое количество фактов об устройстве реального мира из простого видеонаблюдения или других каналов, — говорит Лекун. — Это позволит им в конце концов приобрести здравый смысл. Это то, чему животные и дети учатся в первые месяцы жизни — невероятно большой объем знаний мы получаем из простого наблюдения за миром. Сейчас машины легко ввести в заблуждение, поскольку они знают о мире очень мало». Facebook проявляет большой интерес к разработкам системы, умеющей предсказывать будущее: вы показываете ей несколько кадров видео, и она пытается угадать, что будет дальше. Если это получится, появится основа для создания обучения без учителя. Лекун считает эту область особенно многообещающей, и не только для распознавания изображений, но и для развития всего ИИ, пишет MIT Technology Review. По мнению Лекуна, крайне важно понять, как программа могла бы делать то, что с такой легкостью дается детям, если мы стремимся к амбициозной цели создания искусственного интеллекта. В поисках решения этой задачи ученые создают искусственные нейронные сети, которые поглощают видео и изображения, а затем генерируют новые изображения, используя полученное знание. Это доказывает, что они смогли сформировать какое-то внутреннее понимание происходящего. Комментарии: |
|