Рисуем остаток совы на базе нейросетей |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-02-24 10:43 Идея дорисовать сову из кружочков реализована с помощью нейросетей.
На сайте http://affinelayer.com/pixsrv/index.html Кристофера Гессе представлена нейросеть, способная дорисовывать кошек. Пользователю предлагается нарисовать набросок кошки в левом окне, нажать «process» и посмотреть, как нейросеть дорисует иллюстрацию. На странице показан такой красивый пример: Вот что пишет сам автор: Недавно, я сделал Tensorflow порт pix2pix на Isola и др., рассмотренный в статье Image-to-Image Translation in Tensorflow. Я взял несколько ранее созданных моделей и сделал интерактивную веб страницу для тестирования. Для просмотра рекомендуется браузер Chrome. Модель pix2pix работает путем обучения на парах изображений, таких как набросок фасада здания и полного изображения фасадов зданий, а затем пытается сгенерировать соответствующее выходное изображение для любого входного переданного изображения. Эта идея берет начало из статьи pix2pix, которая рекомендуется к прочтению. Фасады Модель обучалась на выборки набросков фасадов зданий к полноценным изображениям фасадов. Навряд ли эта модель будет работать на набросках с большой пустой областью, но если в наброске нарисовать достаточное количество окон, то часто модель дает хорошие результаты. На картинке наброска элементы фасада нарисованы цветными прямоугольниками, чтобы обозначить не только границы, но и целиком элементы. У меня не было названия различных частей фасадов зданий, так что я просто приблизительно их обозначил. edges2cats Обучение проходило на приблизительно 2000 фотографий котов и набросков с автоматически сгенерированными границами для этих фотографий. Модель создает цветные изображения кошек из набросков, но некоторые сталкивается с кошмарными результатами. Один из таких я видел тут. Некоторые картинки выглядят особенно жуткими, я думаю, потому коты были нарисованы неправильно, особено из за глаз. Процедура автогенерации границ была не очень качественной, и во многих случаях не обнаруживала глаза кошки, что ухудшает качество подготовленной базы изображений для обучения модели. edges2shoes Обучение проводилось на базе приблизительно 50 тысяч картинок обуви, собранных из Zappos, а также с автоматически сгенерированными набросками границ для этих изображений. Если вы действительно хорошо нарисуете границы обуви, вы можете попытаться создать некоторый новый дизайн. Имейте в виду, модель обучалась на реальных объектах, так что если вы можете нарисовать более качественный 3D набросок, то результат будет выглядеть лучше. edges2handbags По аналогии с предыдущими, обучение проводилось на базе приблизительно 137 тысяч фотографий сумок, собранных из Amazon, c автоматически cгенерированными набросками границ для этих фотографий. Если вы нарисуете здесь ботинок вместо сумочки, вы получите очень странную текстуру обуви. Реализация Обучение и экспорт моделей был произведен с помощью скрипта pix2pix.py из pix2pix-tensorflow. Интерактивное демо сделано на базе JavaScript с использованием Canvas API, которое взаимодействует с сервером, который передает изображения Tensorflow. Сервер может запускать Tensorflow сам или пересылать запросы на Cloud ML Google службы Tensorflow. Обученные модели доступны в разделе Datasets на GitHub. Также должны быть доступны модели идущие вместе с оригинальной реализацией pix2pix. Модели могут быть экспортированы из обученных примеров с использованием скрипта pix2pix.py и ссылки на экспортируемые модели есть в файле README на сервере GitHub. Границы для фотографий кошек были получены с использованием алгоритма Holistically-Nested Edge Detection и этот функционал был добавлен к скрипту process.py и соответствующие зависимости были добавлены к Docker image. Источник: geektimes.ru Комментарии: |
|