Neurostream — новый чип для глубокого обучения |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-02-07 15:55 Высокопроизводительные вычислительные системы уже находят применение для памяти с высокой пропускной способностью (HBM) и технологии Hybrid Memory Cube (HMC). В этом направлении активно ведутся разработки.
Ученые из Болонского университета в конце января представили архитектуру для вычислений в памяти (PIM), способную эффективно работать с глубокими свёрточными нейронными сетями. Она получила название Neurostream. Дизайн базируется на перспективном типе компьютерной оперативной памяти HMC (Hybrid Memory Cube), который в рамках проекта получил название Smart Memory Cube, или SMC. Решение дополняется многоядерной PIM-платформой NeuroCluster. NeuroCluster имеет модульный дизайн, основанный на сопроцессорах для вычислений с плавающей точкой NeuroStream и RISC-V. Интересно то, что только 8% кристаллов HMC используются для достижения производительности 240 гигафлопс при энергопотреблении в 2,5 ватта. «Кубы памяти» обладают очень маленьким энергопотреблением, но способны справляться с задачами для свёрточных сетей, — говорится в статье ученых из университета. — Это позволяет высвободить ресурсы компьютерной логики для обработки другой нагрузки». Небольшое увеличение энергопотребления системы и незначительный рост занимаемого пространства при масштабировании делают эту PIM-систему затрато- и энергоэффективной, которая может быть легко расширена до 955 гигафлопс при включении четырех SMC. Ученые сравнили возможности нового решения с вычислительными мощностями GPU Nvidia Tesla K40. Tesla K40 оказался способен реализовать 1092 гигафлопс при энергопотреблении 235 ватт. Технология NeuroGrid достигла 955 гигафлопс при мощности 42,8 ватта — энергоэффективность в 4,8 раза выше, чем у GPU. Более того, создатели Neurostream ожидают, что энергоэффективность может быть повышена с помощью программных решений, а также выполнения арифметических операций пониженной точности. По уверениям ученых, это может снизить энергопотребление на 70%. Подробнее о решении можно прочитать в статье сотрудников Болонского университета. Далее, в своей работе исследователи планируют изучить возможности реализации системы с четырьмя блоками NeuroCluster, которые будут использоваться для мониторинга процесса обучения сетей. Источник: habrahabr.ru Комментарии: |
|