Куда попадают самые «влиятельные» мутации

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Среди мутаций, ощутимо влияющих на молекулярную жизнь клетки, видное место занимают те, от которых зависит точность и эффективность сплайсинга РНК.

Мутации – это изменения в генетическом тексте, то есть всевозможные замены, выпадения и вставки нуклеотидов в ДНК, как поодиночке, так и целыми группами.

Схема вырезания интрона из пре-мРНК. (Иллюстрация By BCSteve - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=30096313.)
Схема вырезания интрона из пре-мРНК. (Иллюстрация By BCSteve - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=30096313.)
Рибосомы, синтезирующие белковые молекулы на ленте матричной РНК. В белковом синтезе участвуют только те мРНК, которые прошли через сплайсинг и избавились от интронов. (Фото Dr. Donald Fawcett & Kiseleva / Visuals Unlimited / Corbis.)
Рибосомы, синтезирующие белковые молекулы на ленте матричной РНК. В белковом синтезе участвуют только те мРНК, которые прошли через сплайсинг и избавились от интронов. (Фото Dr. Donald Fawcett & Kiseleva / Visuals Unlimited / Corbis.)

Давно уже понятно, что мутации могут быть разными: какие-то вообще не оказывают эффект на жизнь организма, какие-то, наоборот, сразу меняют всю судьбу клетки. Мы знаем, что ДНК по содержанию неоднородна: в ней есть участки, в которых зашифрована аминокислотная последовательность белков, есть участки, в которых зашифрованы регуляторные молекулы РНК, есть фрагменты, которые сами по себе не несут информацию ни о белках, ни о регуляторных РНК, но зато влияют на активность других генов.

Раньше считалось, что наиболее «влиятельные» мутации попадают именно в белок-кодирующие участки ДНК. (Хотя стоит заметить, что и внутри таких фрагментов есть свои особенности – какие-то нуклеотиды в них особенно важны для правильного синтеза белка, какие-то нет.) С этим никто не спорит – конечно, если в клетке вместо нормального белка появится мутантный, не способный делать ту работу, которая от него требуется, то клетке придётся плохо.

Однако с развитием технологий, позволяющих всё более точно читать последовательность ДНК, и с развитием методов анализа, позволяющих сравнивать по определённым алгоритмам огромные массивы генетической информации, биологам и медикам стало постепенно понятно, что большая часть мутаций, связанных с какими-то болезнями, физиологическими особенностями или отклонениями, находится как раз в регуляторных зонах, которые сами белков не кодируют.

 Поэтому нужно поскорее разобраться, как именно это происходит, то есть как те или иные изменения в регуляторных фрагментах ДНК сказываются на молекулярных процессах, происходящие с генетической информацией.

Как выяснили исследователи из Стэнфордского университета и Чикагского университета, львиная доля медицински важных мутаций приходится на те последовательности, от которых зависит правильность сплайсинга РНК.

Как известно, для синтеза белковой молекулы информацию с ДНК нужно скопировать на информационный посредник – матричную РНК. Но, в отличие от бактерий и архей, у всех эукариот (которым относится и человек) в матричной РНК, кроме «содержательных» кусков, в которых действительно есть информация для синтеза конкретного белка, есть ещё и «бессодержательные» куски, которые для синтеза белка не нужны.

 «Содержательные» последовательности называют экзонами, «бессодержательные» – интронами. В том виде, в каком матричная РНК появляется на свет, с чередующимися интронами и экзонами, она для сборки белковой молекулы не годится. Поэтому между транскрипцией (то есть синтезом РНК-копии на ДНК-шаблоне) и трансляцией (то есть синтезом аминокислотной последовательности на матричной РНК) в эукариотических клетках втиснут сплайсинг – когда из РНК вырезаются все интроны.

Сплайсингом занимаются специальные белки, и самого сплайсинга есть несколько видов, но в целом весь процесс сводится к тому, чтобы в «необработанной» молекуле матричной РНК (её называют пре-мРНК) найти экзон-интронные границы, разрезать молекулу по ним, интрон выбросить, а оставшиеся концы экзонов срастить.

Границы между интронами и экзонами – это характерные последовательности нуклеотидов, и белки, занимающиеся сплайсингом, определяют их довольно точно. Легко можно представить, к чему приведёт мутация, попавшая пограничную зону: в обработанной, сплайсированной РНК может появиться преждевременный стоп-сигнал, и белок просто не будет синтезирован до конца, или же часть молекулы окажется бессмысленным набором аминокислот, и весь белок превратиться в мусор.

Считается, что около 15% всех наших болезней возникает как раз из-за мутационных неполадок в сплайсинге.

В течение нескольких лет Джонатан Причард (Jonathan K. Pritchard) и его коллеги с помощью разнообразных статистических методов подбирали к мутациям в человеческой ДНК возможные молекулярные последствия. Исследователей в первую очередь интересовало, как те или иные изменения в нуклеотидной последовательности сказываются на молекулярных признаках – то есть когда из-за них меняется уровень белка в целом, когда меняется интенсивность транскрипции и т. д. (Рассматривались только те нуклеотидные изменения, которые не меняют последовательность белков, так что, например, мутации в ферментах, осуществляющих транскрипцию или сплайсинг, в исследовании, так сказать, «не участвовали».) Всё это нужно было сопоставить с положением конкретных мутаций в цепочке ДНК.

В статье в Science авторы пишут, что самыми «сильнодействующими» мутациями были те, которые влияли на основные молекулярные механизмы, из-за которых менялась активность генов в целом. Однако не менее «влиятельными» оказались нуклеотидные варианты в тех участках ДНК, которые отвечали за точность и эффективность сплайсинга. Их набралось около 3 тысяч, и они оказались связаны с целым рядом болезней – например, особенно богат на сплайсинговые мутации оказался рассеянный склероз.

То, что неполадки в сплайсинге могут быть чреваты серьёзными неприятностями, кажется вполне очевидным, однако до сих пор никто не мог оценить статистическую взаимосвязь между соответствующими нуклеотидными вариациями и наглядными молекулярно-клеточными и физиологическими изменениями.

У каждого из нас в ДНК есть масса отличий, некоторые из них остаются без последствий, а некоторые – совсем наоборот, и, по-видимому, в ближайшем будущем специалисты в области медицинской генетики начнут уже целенаправленно изучать свойства нуклеотидных замен, вставок, делеций, имеющих отношение именно к сплайсингу.

Сами авторы исследования говорят, что многие из таких мутаций никак не влияли на молекулярное состояние клетки, и в дальнейшем нам ещё предстоит узнать, от чего зависит «влиятельность» спласинговой мутации, и какие механизмы позволяют клетке защититься от подобных неприятностей.


Источник: www.nkj.ru

Комментарии: