Искусственный интеллект и его ближайшее будущее |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-02-26 16:30 В последнее время мы видим все больше статей, обсуждений и даже книг про то, что такое искусственный интеллект и как его можно использовать. Технологическими компаниями уже создаются ассоциации для взаимного обсуждения целей и задач нового направления развития. Предлагаемые сегодня решения и разработки открывают новые грани использования искусственного интеллекта и способствуют более глубокой его интеграции в повседневную жизнь человека. Будущее, которое мы так долго ждали, о котором с интересом читали в научной литературе и которое представляли в сюжетах фантастических фильмов, уже наступило. Что же будет дальше? В этом материале мы публикуем мнение визионеров лаборатории Microsoft Research о текущем положении дел в сфере развития технологий искусственного интеллекта (ИИ) и о его трендах на ближайшие несколько лет. В следующем году и ближайшие несколько лет очередной стимул развития получат технологии лингвистической обработки. Так, в частности, функционал инструментов распознавания речи будет пополняться все новыми языками. Появится больше систем, позволяющих понимать, обрабатывать и генерировать языки. Эти решения откроют пользователю новые возможности легко переключаться с одного языка на другой, более того, возможны даже будут мультиязычные беседы. В перспективе ближайших нескольких лет появятся системы искусственного интеллекта, которые смогут без труда общаться с людьми и даже будут адаптироваться к различным социальным ситуациям, будь то переговоры, жаркие дискуссии или философские рассуждения. Поэтому в следующие 10 лет нам стоит ожидать появления такого явления, как социально-культурный искусственный интеллект. Мы научились создавать машины, которые способны взаимодействовать с человеком, понимать его потребности и помогать в решении повседневных задач. Алгоритмы глубинного машинного обучения сегодня способны генерировать результат, который нужен человеку, обнажая зачастую то, что в приличном обществе принято осуждать. Другими словами, мы научили искусственный интеллект пониманию и удовлетворению ежедневных потребностей человека, но пока не научили хорошим манерам и этике. Значит ли это, что дисциплины морали и нравственности не являются приоритетом современного человека, его ежедневной необходимостью? Совсем нет. Поэтому задача следующих ближайших лет – разработать правила для ИИ и алгоритмы машинного обучения, исключающие воспроизводство результатов, содержащих дискриминационные и пренебрегающие этическими нормами данные. Прорывом в этом направлении станет появление алгоритмов, которые являются справедливыми, ответственными и более устойчивыми к манипуляциям с вводом ложных данных. В следующем году продолжится совершенствование алгоритмов машинного интеллекта в области поиска. Уже через несколько лет нам стоит ожидать трансформации логики работы всего направления. Будет появляться все больше систем, способных работать под командным голосовым управлением и распознавать речевые запросы, а также запросы, состоящие из картинок, звука, видео, геолокационных и других метаданных. Это приведет к тому, что поисковые запросы пользователей будут все более ситуативными, в рамках существующего контекста (местоположение, доступность информации, визуальное или звуковое окружение и т. п.). Эта тенденция будет ускоряться. Оператор машинного интеллекта уже существующая реальность. В ближайшие несколько лет таких необычных профессий станет больше. По данным исследовательского центра Microsoft, к 2027 году треть работоспособного населения будет занято в сфере услуг, которые будут оказывать системы на базе искусственного интеллекта (например, налоговое консультирование, поддержка здравоохранения и т. п.). Это говорит о том, что в искусственном интеллекте – источник повышения рабочей силы. В 2017 году мы увидим первые решения на базе интернета вещей для сельского хозяйства. Такие решения будут строиться на объединении функциональности компьютерного зрения и облачных технологий. Это позволит фермерам диагностировать, контролировать, анализировать, планировать состояние своих хозяйств на всех этапах производства. Фермеры с помощью искусственного интеллекта смогут поддерживать рентабельность своих производств независимо от изменения климата, засухи и стихийных бедствий. Будущее пищевой промышленности зависит от нашей способности сохранить и улучшить использование основных ресурсов нашей планеты, уменьшить истощение почвы путем перехода от традиционной сельскохозяйственной практики к альтернативной с малыми энергозатратами. Для окружающей среды и экологии упор будет сделан на сохранение наших лесов с помощью измерительных технологий. В следующем году будет продолжен быстрый прогресс в области компьютерного зрения на основе алгоритмов глубинного машинного обучения. Мы уже можем наблюдать, как запущенный недавно проект Iceberg позволяет по-новому взглянуть на хоккейные матчи. Алгоритмы компьютерного зрения предоставляют возможность обрабатывать объекты на видеокадрах в реальном времени для анализа и принятия решений – в данном случае со стороны тренера играющей команды. А родоначальник «уберизации», компания Uber, использует когнитивные сервисы для верификации водителя в автомобиле, сравнивая фотографию, сделанную на телефон, с информацией из зарегистрированного профиля. Достоверность водителя повышает безопасность поездок, лояльность пользователей и в конечном итоге напрямую влияет на растущий бизнес компании. К 2027 году способность компьютеров «видеть» будет повсеместной, так как мы будем иметь высокоразвитые устройства обработки изображений, мощные вычислительные ресурсы и комбинированные методы обучения машинного интеллекта. Достижения этих методов приведут к расширению отраслей применения этой технологии: от производства и здравоохранения до финансов и безопасности. Эффективность традиционного бизнеса регулируется за счет роста продаж или сокращения издержек производства. Искусственный интеллект позволяет по-новому взглянуть на традиционные бизнес-задачи, видоизменить бизнес-модели и обнаружить ранее скрытый экономический потенциал целых отраслей. Мы это видели и раньше на примере так называемой «уберизации». Сбор, обработка и анализ больших данных с помощью алгоритмов машинного обучения позволяет компаниям экономить миллионы долларов ежегодно, демонстрируя себе и рынку потенциал решений на базе искусственного интеллекта для разных отраслей в ближайшем будущем. Речь идет о внедрении систем, позволяющих компаниям принимать взвешенные, долгосрочные бизнес-решения и своевременно реагировать на ситуацию в отрасли в зависимости от экономического, физического и географического контекста. Алгоритмы искусственного интеллекта доступны многие десятилетия, но именно сейчас вычислительные облачные мощности и бизнес-ценность позволили им стать в центр ежедневных переговоров. Самоуправляемые автомобили, решения для борьбы с раковыми опухолями, прогнозирование поведения рынков и многое другое – все это открывает новые возможности для бизнеса каждый день. Еще никогда такие сложные технологии не были доступны каждому, а значит, у нас есть все шансы застать золотой век четвертой индустриальной революции – век искусственного интеллекта. Источник: naked-science.ru Комментарии: |
|