СКОЛЬКО ЧАСОВ УМЕЩАЕТСЯ В МОЗГЕ? |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-01-23 05:50 Вместо единых часов, позволяющих нашему мозгу оценивать временные промежутки, у нас может быть огромный набор нейронных хронометров, которые включаются в ответ на различные ритмические рисунки, поступающие в мозг с внешними стимулами. Одна из самых больших загадок мозга заключается в том, как он обращается со временем. Мы интуитивно понимаем, что произошло раньше, а что — позже, сколько времени прошло между событиями. Однако какие нейронные механизмы тут работают, учёные до сих пор плохо себе представляют. Очевидно, что в основе чувства времени должна быть некая ритмическая активность, которая делила бы временной поток на равные части. Одна из распространённых гипотез на эту тему говорит о существовании в мозге собственных «часов» — группы нейронов, которая сравнивает происходящее снаружи со своим ритмом. Однако возможны и другие объяснения: по мнению исследователей из Пекинского педагогического университета (Китай), мозг может выучивать внешние ритмы, которые приходят к нему со зрительными, слуховыми и прочими стимулами. То есть «часы» как бы есть, но они запускаются извне и обладают разным ходом. Но если ритм задаётся извне, то каким образом нейронной цепочке удаётся поддерживать возбуждённые колебания? Ведь, как мы знаем, входящий импульс рождает у нейрона некий ответ, и происходит это чрезвычайно быстро, то есть до того, как к нейрону придёт второй импульс из ритмической серии, нейрон уже забудет о первом. Иными словами, два стимула, пусть и одной природы, и вполне ритмичные, будут восприниматься как нечто не связанное одно с другим. Но чтобы ритм удалось ввести в нейронную цепь, всё должно быть иначе: в нейронах должна оставаться память о предыдущем стимуле, чтобы следующий оказался с ним связан. В журнале PNAS Сы У (Si Wu) и его коллеги предлагают модель нейронных часов, которые как раз удерживают в течение довольно долгого (по нейронным меркам) времени память о ритмических стимулах. Модель строится на нейронной петле, способной объединять много клеток, но защищённой при этом от синхронного возбуждения. Обычно, если мы говорим о группе нейронов, связанных между собой, то одновременно полагаем, что входящий импульс возбуждает сразу все клетки группы или хотя бы делает это с ничтожной задержкой. В той сети, которую описывают исследователи, дела обстоят несколько иначе: в неё входят нейроны, соединённые лишь с некоторыми соседями, и другие нейроны, которые выполняют функцию хабов, то есть обеспечивают мгновенное включение сразу большого числа других клеток. Нейроны в такой сети соединены различными синапсами: одни соединения представляют собой простые электрические синапсы, другие — химические, которые позволяют регулировать соответствие между входящим импульсом и возбуждением принимающего нейрона. Как всё происходит? Некий стимул вызывает бегущий импульс по кольцу (цепочке) нейронов, и время его пути зависит от длины цепочки, от того, сколько в неё входит клеток. Сигнал по тому кольцу может пробегать несколько раз, но никакой ритмической отбивки тут нет — ну бегает сигнал и бегает, где у него конец, где начало, сказать трудно. Но к этой цепочке подсоединены нейроны-хабы; возбудить их довольно трудно, зато они сами легко возбуждают своих соседей. Чтобы клетка-хаб инициировалась, к ней должен прийти усиленный сигнал — к примеру, двойной. Такой нейрон может быть соединён с двумя цепочками одинаковой длины, и тогда периодически на «хаб» будет приходить двойной сигнал. И в этот момент нейрон-хаб будет провоцировать массовую вспышку среди всех своих приёмников, и эта вспышка как раз и будет ритмической отбивкой. Сам размер ритма в этом случае определяется разнообразными кольцами, петлями, цепочками легковозбудимых нейронов, которые удерживают изначальный ритмический сигнал. От конфигурации этих колец, а также от того, как в них встроены трудновозбудимые хабы и сколько нужно потратить усилий, чтобы «запустить» такой хаб, и будет зависеть чередование массовых ритмических вспышек. Главное тут — выбор подходящей нейронной петли в момент, когда извне приходит ритмический сигнал: мозг должен выбрать подходящие «часы», которые можно завести под конкретный ритм. Понятно, что огромную роль здесь играет синаптическая пластичность, позволяющая перестраивать нейронные цепочки в зависимости от текущей задачи. Кроме того, авторы работы считают, что такая часовая система должна представлять собой так называемую безмасштабную сеть, хотя это требование не обязательно выполнять слишком строго: главное, чтобы в системе было очень много нейронов с небольшим количеством соединений («хранители ритма») и немного — с большим («хабы-куранты»). Иными словами, модель отказывается от единого часового центра в мозге, предлагая взамен довольно пластичную (и весьма неэкономичную) систему, впитывающую различные ритмы извне. Стоит, однако, заметить, что эта модель, хотя и отличается остроумием, всё же является пока преимущественно теоретической. Впрочем, некоторые экспериментальные данные вполне с ней согласуются, так что, возможно, наш мозг действительно обладает не одними, а целым ворохом «часов» всевозможных размеров. Источник: compulenta.computerra.ru Комментарии: |
|