Сбор и анализ Big Data позволяют учитывать потребности клиентов с фантастической точностью |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-01-16 02:15 Сбор и анализ Big Data позволяют учитывать потребности клиентов с фантастической точностью. Три проекта в области цифрового управления маркетингом, реализованные в России. «Серийное» использование больших данных в маркетинге дало старт формированию новых, цифровых методов управления маркетингом и другими сферами бизнеса (например, подбором персонала, что тоже сфера маркетинга, только на рынке труда). Data Driven Marketing – маркетинг, основанный на данных, а не на ощущениях и оценках специалистов, – концепция, известная, как минимум, десятилетие. Но лишь благодаря использованию Big Data он перестает быть благим пожеланием менеджмента компаний и становится реальной возможностью. Наступает эпоха всеобщего цифрового, математически точного маркетинга. Экономия и эффективность У цифрового управления маркетингом два главных отличия от традиционного: почти полная независимость от экспертизы и практически ежеминутный контроль эффективности. Маркетологи теперь важны преимущественно при выработке гипотез для маркетинговых кампаний. Дальше гипотезы проверяются, и происходит таргетирование потребителей по отношению к выбору рекламных каналов, восприятия креативных решений (баннеров), видов продуктов и их моделей, вариантов скидок, видов каналов коммуникации (email, sms, телефон), времени суток/года, а также событий, когда коммуникация наиболее эффективны. Все это дает существенную экономию маркетингового бюджета. Ведь одно дело – совершить тысячи звонков, а другое – осуществить несколько точечных контактов. Таргетирует потребителей и офлайновое управление маркетингом, возразите вы. Но цифровое делает это тонко и точно. За счет обработки больших данных получается статистически более достоверный результат. Кроме того, появляется возможность работать с нестрогими целевыми группами, учитывать разную степень отнесения потребителя к тем или иным группам (нечеткие множества). Вы в любой момент оценить эффективность принятых решений. Из той выборки, которую система рекомендует, случайно выбирается потенциальный клиент, и его реакции сравниваются с теми, которые должны быть согласно модели потребительского поведения. Система на каждом шаге делает это автоматически – то есть происходит ее постоянная самокоррекция. Воронка релевантности Насколько эффективно цифровое управление в активном маркетинге? Одна из российских обувных компаний решает с помощью цифрового управления маркетингом задачу оптимизации воронки продаж. Воронка, как известно, подразумевает выявление максимума интересующихся брендом и перевод максимума из них в категорию покупателей. По отношению к продукту люди делятся на четыре категории. Кто-то пока не знает о существовании бренда, кто-то знает и интересуется, кто-то уже что-то просматривал в интернет-магазине, но «положил» обратно, а кто-то уже приобретал там товары. Первым нужно сообщить о товаре. Вторым – показать модели обуви, которые с высокой вероятностью вызовут позитивный отклик. Третьим – предложить скидки и другие дополнительные стимулы для покупки. А четвертых важно проинформировать о сопутствующих товарах и новых моделях взамен той, что они уже приобретали. Начиная реализацию цифровой модели управления маркетингом, компания обратилась к одному из агентств интернет-рекламы для выработки гипотез и совместной разработки стратегия привлечения покупателей. Как убедить целевую аудиторию, что бренд ей подходит? – был поставлен вопрос. Параллельно был собран корпус данных для цифрового управления. Были взяты данные из корпоративной CRM и программы лояльности, дополнены открытыми данными из паблика интернета. В результате с помощью экспертизы и информационной системы определены категории потребителей, которых может заинтересовать модель. На основе знаний агентства отобраны каналы продвижения, отобраны сети, которые умеют показывать баннеры именно в этих каналах, а также разработано несколько типов креативных решений. А вот дальше включилась цифровая система. Данные о просмотрах баннеров стали поступать в так называемую платформу управления данными (Data Management Platform – DMP). Стала формироваться четкая картина того, какие каналы и креативные решения более эффективны, а какие – менее, какие группы потребителей наиболее заинтересованы в бренде, а какие – вообще не заинтересовались. После каждой итерации отброшены группы и каналы, на которые не имеет смысла расходовать бюджет. Совместными с рекламным агентством усилиями, на основе данных DMP разработана стратегия продаж. И после запуска она точно также стала реализовываться и по мере необходимости корректироваться с помощью цифровой системы управления маркетингом. Тех, кто заинтересовался товарами, сайт просил оставить информацию о себе. С ее помощью система анализировала тех, кто перешел на сайт. Потенциальный клиент уже предпринял какие-то действия? Скачал брошюру о бренде? Задает вопросы по тем или иным моделям? Следовательно, он уже готов в коммуникации через email, sms, телефонные звонки. Система разрабатывала для различных категорий клиентов индивидуальные предложения исходя из своих знаний о соответствующем социально-демографическом и потребительском типаже. В зависимости от реакции на эти предложения вырабатывались дополнительные стимулы, скидки. Они определялись на основе статистики о том, какой социально-демографический и потребительский типаж при каком уровне цены чаще всего покупал обувь. Цифровое управление воронкой продаж в обувной компании функционирует уже больше года. Благодаря ей обувной бренд увеличил объем продаж более чем в два раза. Смотрите, кто пришел Цифровое управление не менее эффективно в пассивном маркетинговом режиме – режиме ожидания клиентов. На сайте одного из поставщиков автомобилей до построения системы цифрового управления был только счетчик, который учитывал число посетителей по IP-адресам. Чтобы собрать более содержательную информацию, на сайте была реализована тестовая, без таргетирования потребителей, рекламная кампания. Цель – собрать максимально широкий спектр данных о посетителях, а затем выделить их сегменты. Кампания проводилась три месяца. За это время была собрана достаточно подробная информация о потребителях: те данные, которыми они сами были готовы делиться, плюс дополненные сведения из социальных сетей и других открытых источников. В результате автомобильная фирма увидела, на какие группы потребителей рекламная кампания действует лучше всего, а какие нуждаются в дополнительных стимулах. Была выполнена нарезка кластеров по типовым потребительским профилям. На следующем шаге автомобильная компания спроектировала рекламные каналы для того, чтобы найти потенциальных потребителей сходных типажей. Затем было запущено несколько рекламных программ, ориентированных на выделенные целевые аудитории. Замечу, что все мероприятия выполнялись только на основе данных, собранных системой цифрового управления маркетингом: без привлечения сторонних консультантов и без гипотез собственных маркетологов. При реализации кейса обнаружилось, что на сайт этого поставщика автомобилей приходит немало владельцев машин одной из конкурирующих марок, о чем маркетологи не знали. Система позволила параллельно осуществить и еще один проект пассивного маркетинга – анализ объявлений на различных сайтах, где продаются автомобили. DMP выделяла клиентов, которые продают автомобили данного поставщика, и в этот момент им делалось предложение трейд-ин, предлагался тест-драйв новой модели. Отклик по таким коммуникациям доходил до 50%. Благодаря этому в период падения потребительского спроса продажи не сократились, тогда как у других участников рынка они снизились примерно на 15%. Синергия самоанализа Третий пример касается использования цифрового управления для эффективного кросс-сейлинга. В одном из розничных банков с помощью цифрового управления маркетингом реализована система продажи дополнительных банковских продуктов. Там экспертным и математическим способами выделили критерии лояльного и заинтересованного в новых продуктах клиента, научили систему их искать – и продажи продуктов банка без привлечения новых клиентов выросли на 20%. Затем система кросс-сейла была использована в тандеме с системой продаж банковских продуктов новым пользователям. Во внешней среде были найдены потребители, аналогичные по своим характеристикам тем, кого заинтересовал кросс-сейл, и по отношению к ним проведены целенаправленные маркетинговые кампании. Банк получил большое число надежных заемщиков и новых вкладчиков. Все наоборот Цифровое управление маркетингом в России реализовано прежде всего в брендированных и специализированных торговых сетях с активной интернет-торговлей, автомобильных компаниях, банках и телекоммуникационных фирмах. Опыт показывает, что системное цифровое управления маркетингом должно строиться в последовательности, обратной приведенным мной примерам. Сначала – работа с собственной базой, накопленной в CRM и программах лояльности, для кросс-сейла. Затем – работа с клиентами, пришедшими на сайт и проявившимися с помощью объявлений, результатом которой становится таргетирование аудитории. И на этой основе – разработка и реализация стратегии привлечения клиентов с помощью цифровых каналов продвижения, партнерских сетей, собственных сайтов и мобильных приложений и стратегии продаж. Такая последовательность делает управление маркетингом наиболее эффективным. Источник: e-xecutive.ru Комментарии: |
|