![]() |
![]() |
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
Простейшее управление компьютером при помощи голоса |
||||||||||||||||||||||||||||||||||||||||||||||||||||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-01-16 17:35 Если вас интересует, как помочь обездвиженному человеку управлять компьютером для общения с внешним миром – вам сюда. Если вам интересно, какое отношение к этому имеют мел-частотные кепстральные коэффициенты и нейронные сети – вам тоже сюда.
Часть I. Программа для управления компьютером при помощи голоса Ко мне обратился человек с просьбой написать программу, которая позволила бы управлять компьютерной мышью при помощи голоса. Тогда я и представить себе не мог, что, практически полностью парализованный человек, который даже не может сам повернуть голову, а может лишь разговаривать, способен развить бурную деятельность, помогая себе и другим жить активной жизнью, получать новые знания и навыки, работать и зарабатывать, общаться с другими людьми по всему свету, участвовать в конкурсе социальных проектов. Позволю себе привести здесь пару ссылок на сайты, автором и/или идейным вдохновителем которых является этот человек – Александр Макарчук из города Борисов, Беларусь:
Для работы на компьютере Александр использовал программу «Vocal Joystick» — разработку студентов Университета штата Вашингтон, выполненную на деньги Национального Научного Фонда (NSF). См. melodi.ee.washington.edu/vj Не удержался Кстати, на сайте университета (http://www.washington.edu/) 90% статей именно про деньги. Трудно найти что-нибудь про научную работу. Вот, например, выдержки с первой страницы: «Том, выпускник университета, раньше питался грибами и с трудом платил за квартиру. Теперь он старший менеджер ИТ-компании и кредитует университет», «Большие Данные помогают бездомным», «Компания обязалась заплатить 5 миллионов долларов за новый учебный корпус». Это одному мне режет глаз? Программа была сделана в 2005-2009 годах и хорошо работала на Windows XP. В более свежих версиях Windows программа может зависнуть, что неприемлемо для человека, который не может встать со стула и её перезапустить. Поэтому программу нужно было переделать. Исходных текстов нет, есть только отдельные публикации, приоткрывающие технологии, на которых она основана (MFCC, MLP – читайте об этом во второй части). По образу и подобию была написана новая программа (месяца за три). Собственно, посмотреть, как она работает, можно здесь: Никаких особенных действий для установки программы выполнять не надо, просто щёлкаете на ней, да запускаете. Единственное, в некоторых случаях требуется, чтобы она была запущена от имени администратора (например, при работе с виртуальной клавиатурой “Comfort Keys Pro”): ![]() Если у вас есть возможность поворачивать голову, то хорошей альтернативой eViacam может послужить гироскоп, крепящийся к голове. Вы получите быстрое и точное позиционирование курсора и независимость от освещения. Подробнее – здесь. Если вы можете двигать только зрачками глаз, то можно использовать трекер направления взгляда и программу к нему (могут быть сложности, если вы носите очки). Подробнее – здесь. Часть II. Как это устроено? Из опубликованных материалов о программе «Vocal Joystick» было известно, что работает она следующим образом:
Первая задача примечательна лишь тем, что для её решения в реальном времени пришлось вводить в программу три дополнительных потока, так как считывание данных с микрофона, обработка звука, проигрывание звука через звуковую карту происходят асинхронно. Последняя задача просто реализуется при помощи функции SendInput. Наибольший же интерес, мне кажется, представляют вторая и третья задачи. Итак. Задача №2. Получение 13 кепстральных коэффициентов Если кто не в теме – основная проблема узнавания звуков компьютером заключается в следующем: трудно сравнить два звука, так как две непохожие по очертанию звуковые волны могут звучать похоже с точки зрения человеческого восприятия. И среди тех, кто занимается распознаванием речи, идёт поиск «философского камня» — набора признаков, которые бы однозначно классифицировали звуковую волну.Из тех признаков, что доступны широкой публике и описаны в учебниках, наибольшее распространение получили так называемые мел-частотные кепстральные коэффициенты (MFCC). История их такова, что изначально они предназначались совсем для другого, а именно, для подавления эха в сигнале (познавательную статью на эту тему написали уважаемые Оппенгейм и Шафер, да пребудет радость в домах этих благородных мужей. См. A. V. Oppenheim and R.W. Schafer, “From Frequency to Quefrency: A History of the Cepstrum”). Но человек устроен так, что он склонен использовать то, что ему лучше знакомо. И тем, кто занимался речевыми сигналами, пришло в голову использовать уже готовое компактное представление сигнала в виде MFCC. Оказалось, что, в общем, работает. (Один мой знакомый, специалист по вентиляционным системам, когда я его спросил, как бы сделать дачную беседку, предложил использовать вентиляционные короба. Просто потому, что их он знал лучше других строительных материалов). Являются ли MFCC хорошим классификатором для звуков? Я бы не сказал. Один и тот же звук, произнесённый мною в разные микрофоны, попадает в разные области пространства MFCC-коэффициентов, а идеальный классификатор нарисовал бы их рядом. Поэтому, в частности, при смене микрофона вы должны заново обучать программу. ![]() Однако, поскольку ничего лучшего я предложить не могу, также воспользуюсь стандартной методикой – вычислением MFCC-коэффициентов. Чтобы не ошибиться в реализации, в первых версиях программы в качестве основы был использован код из хорошо известной программы CMU Sphinx, точнее, её реализации на языке C, именующейся pocketsphinx, разработанной в Университете Карнеги-Меллона (мир с ними обоими! (с) Хоттабыч). Исходные коды pocketsphinx открыты, да вот незадача – если вы их используете, то должны в своей программе (как в исходниках, так и в исполняемом модуле) прописать текст, содержащий, в том числе, следующее:
Мне это показалось неприемлемым, и пришлось код переписать. Это сказалось на быстродействии программы (в лучшую сторону, кстати, хотя «читабельность» кода несколько пострадала). Во многом благодаря использованию библиотек “Intel Performance Primitives”, но и сам кое-что оптимизировал, вроде MEL-фильтра. Тем не менее, проверка на тестовых данных показала, что получаемые MFCC-коэффициенты полностью аналогичны тем, что получаются при помощи, например, утилиты sphinx_fe. В программах sphinxbase вычисление MFCC-коэффициентов производится следующими шагами:
В эти шаги ещё вклиниваются функции, которые позволяют отделить сигнал от шума и от тишины, типа fe_track_snr, fe_vad_hangover, но нам они не нужны, и отвлекаться на них не будем. Были выполнены следующие замены для шагов по получению MFCC-коэффициентов:
Что же дальше? У нас есть вектор 13-мерного пространства. Как определить, к какому звуку он относится? Задача №3. Проверка того, что произносится один из 6 запомненных звуков В программе-оригинале «Vocal Joystick» для классификации использовался многослойный персептрон (MLP) – нейронная сеть без новомодных наворотов. Давайте посмотрим, насколько оправдано применение нейронной сети здесь.Вспомним, что делают нейроны в искусственных нейронных сетях. Если у нейрона N входов, то нейрон делит N-мерное пространство пополам. Рубит гиперплоскостью наотмашь. При этом в одной половине пространства он срабатывает (выдаёт положительный ответ), а в другой – не срабатывает. Давайте посмотрим на [практически] самый простой вариант – нейрон с двумя входами. Он, естественно, будет делить пополам двумерное пространство. Пусть на вход подаются значения X1 и X2, которые нейрон умножает на весовые коэффициенты W1 и W2, и добавляет свободный член C. ![]() Y=X1*W1+X2*W2+C (опустим пока тонкости про сигмоидальные функции) Считаем, что нейрон срабатывает, когда Y>0. Прямая, заданная уравнением 0=X1*W1+X2*W2+C как раз и делит пространство на часть, где Y>0, и часть, где Y<0. Проиллюстрируем сказанное конкретными числами. Пусть W1=1, W2=1, C=-5; ![]() Из рисунка видно, что для того, чтобы очертить область в двумерном пространстве, нам потребуется по меньшей мере 3 прямых, то есть 3 связанных с ними нейрона. ![]() ![]() ![]() И тут уж без третьего слоя не обойтись: ![]() А третий слой – это уже почти Deep Learning… ![]() ![]() ![]() Если мы выберем слишком мало нейронов в первом слое (три, например), то можем получить вот такую нарезку, которая будет давать много ошибок (ошибочная область заштрихована): ![]() ![]() — Что ты думаешь, доедет то колесо, если б случилось, в Москву или не доедет? Есть ещё один неприятный момент, связанный с нейронными сетями. Их «забывчивость». Если начать скармливать сети только синие точки, и перестать скармливать красные, то она может спокойно отхватить себе кусок красной области, переместив туда свои границы: ![]() А есть одна маленькая, но очень существенная деталь. Я очень хорошо могу отделить красное сердечко от синего фона отрезками прямых в двумерном пространстве. Я неплохо смогу отделить плоскостями статую Венеры от окружающего её трёхмерного пространства. Но в четырёхмерном пространстве я не смогу ничего, извините. А в 13-мерном — тем более. А вот для нейронной сети размерность пространства препятствием не является. Я посмеивался над ней в пространствах малой размерности, но стоило выйти за пределы обыденного, как она меня легко уделала. Тем не менее вопрос пока открыт – насколько оправдано применение нейронной сети в данной конкретной задаче, учитывая перечисленные выше недостатки нейронных сетей. Забудем на секунду, что наши MFCC-коэффициенты находятся в 13-мерном пространстве, и представим, что они двумерные, то есть точки на плоскости. Как в этом случае можно было бы отделить один звук от другого? Пусть MFCC-точки звука 1 имеют среднеквадратическое отклонение R1, что [грубо] означает, что точки, не слишком далеко отклоняющиеся от среднего, наиболее характерные точки, находятся внутри круга с радиусом R1. Точно так же точки, которым мы доверяем у звука 2 находятся внутри круга с радиусом R2. ![]() Напрашивается ответ: посередине между границами кругов. Возражения есть? Возражений нет. Исправление: В программе эта граница делит отрезок, соединяющий центры кругов в соотношении R1:R2, так правильнее. ![]() ![]() ![]() ![]() Так, да не так. К счастью, в пространстве любой размерности остаются такие понятия, как точка, прямая, [гипер]плоскость, [гипер]сфера. Мы повторяем все те же действия и в 13-мерном пространстве: находим дисперсию, определяем радиусы [гипер]сфер, соединяем их центры прямой, рубим её [гипер]плоскостью в точке, равно отдалённой от границ [гипер]сфер. Никакая нейронная сеть не сможет более правильно отделить один звук от другого. Здесь, правда, следует сделать оговорку. Всё это справедливо, если информация о звуке – это облако точек, отклоняющихся от среднего одинаково во всех направлениях, то есть хорошо вписывающееся в гиперсферу. Если бы это облако было фигурой сложной формы, например, 13-мерной изогнутой сосиской, то все приведённые выше рассуждения были бы не верны. И возможно, при правильном обучении, нейронная сеть смогла бы показать здесь свои сильные стороны. Но я бы не рисковал. А применил бы, например, наборы нормальных распределений (GMM), (что, кстати и сделано в CMU Sphinx). Всегда приятнее, когда ты понимаешь, какой конкретно алгоритм привёл к получению результата. А не как в нейронной сети: Оракул, на основе своего многочасового варения бульона из данных для тренировки, повелевает вам принять решение, что запрашиваемый звук – это звук №3. (Меня особенно напрягает, когда нейронной сети пытаются доверить управление автомобилем. Как потом в нестандартной ситуации понять, из-за чего машина повернула влево, а не вправо? Всемогущий Нейрон повелел?). Но наборы нормальных распределений – это уже отдельная большая тема, которая выходит за рамки этой статьи. Надеюсь, что статья была полезной, и/или заставила ваши мозговые извилины поскрипеть. Источник: habrahabr.ru ![]() Комментарии: |
||||||||||||||||||||||||||||||||||||||||||||||||||||