Подборка материалов для изучения машинного обучения

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


2017-01-30 21:22

Семинары

Машинное обучение сейчас является одной из самых востребованных областей в программировании. И действительно — человек издавна мечтал создать ИИ, и сейчас эта мечта близка как никогда. Алгоритмы машинного обучения могут выполнять задачи, которые раньше казались недоступными компьютерам: классификация предметов по их признакам, предсказание определенных событий, даже создание произведений искусства! Мы подготовили для вас подборку материалов, с помощью которых вы сможете освоиться в этой сложной, но невероятно интересной теме.

Во время прохождения курса вы научитесь анализировать большие и сложные наборы данных, создавать приложения, которые смогут строить прогнозы, основываясь на полученных данных, а также создавать системы, которые смогут адаптироваться и совершенствоваться. В финальном проекте вам придется применить полученные навыки в создании оригинального проекта, который будет решать насущные проблемы.

После прохождения курса вы поймете, чем отличается обучение с учителем от обучения без учителя, научитесь определять, какие технологии использовать для определенных наборов данных, научитесь использовать эти технологии на практике и писать код на Python для решения поставленных задач.

Курс дает широкое введение в машинное обучение, data mining и статистические методы распознавания образов и охватывает следующие темы:

Курс также включает многочисленные примеры, что позволит вам научиться применять алгоритмы машинного обучения на практике, например, в проектировании роботов (восприятие, контроль), анализе текстов (онлайн поиск, анти-спам), компьютерном зрении, медицинских информационных системах, обработке аудио, интеллектуальном анализе баз данных и других областях.

Если формат онлайн-курсов вам не по душе, то вы можете посмотреть записи лекций, которые читались на курсе «Машинное обучение» (CS 229).

В этом курсе вы узнаете, что такое нейронные сети и как они применяются в машинном обучении, каким образом нейронные сети используются при распознавании речи и объектов, сегментации изображений, моделировании языков и человеческих эмоций.

Курс содержит как и базовые алгоритмы, так и практическую часть.

Если вы новичок в машинном обучении и совсем не знаете, с чего начать, то эта статья для вас. Она представляет из себя план действий, созданный, чтобы помочь новичкам разобраться в машинном обучении. На каждом шаге вам будут предоставлены бесплатные материалы для дальнейшего изучения.

Если проходить курсы у вас времени нет, но вам очень хочется разобраться в том, что такое нейронные сети и как они работают, то рекомендуем вам посмотреть 10 обучающих видео, посвященных нейронным сетям. Из них вы узнаете, что такое искусственный нейрон, как устроены нейронные сети, какие существуют нюансы в работе с нейронными сетями и как их обучать.

Facebook выпустила шесть коротких видео, призванных помочь разработчикам, ученым и простым людям разобраться в наиболее важных аспектах искусственного интеллекта.

Если вы закончили разбираться с нейронными сетями, то можете попрактиковаться и написать свою нейронную сеть на Python за 13 строчек кода.


Источник: tproger.ru

Комментарии: