Обоняние нейросети проверили на 17 болезнях

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Международная группа ученых впервые показала, что заболевания человека обладают специфическим профилем летучих веществ, с помощью газоанализатора на основе наночастиц и машинного обучения. Результаты работы представлены в журнале ACS Nano.

Известно, что заболевания могут менять метаболизм клеток и приводить к выделению специфических летучих органических веществ (ЛОВ). Диагностика по запахам практиковалась еще в древности (примерно с 400 года до нашей эры), однако ее точность сильно зависела от обоняния врача. Поэтому ученые ищут способы повысить надежность такой диагностики посредством технологий.

Наиболее перспективными в этой связи считаются методы газовой хроматографии и масс-спектрометрии. Прошлые работы показали, что они могут использоваться в диагностике по запаху в инфектологии и онкологии. Вместе с тем хроматографы и спектрометры являются громоздкими и дорогими. Кроме того, универсальной техники для выявления разных болезней на их основе не существует.

В новой работе ученые из Израильского технологического института и других учреждений использовали с этой целью систему Na-Nose. Она включает в себя портативный газоанализатор на базе наночастиц золота или углеродных нанотрубок, покрытых органическими лигандами, и программную часть в виде искусственной нейросети. Последняя позволяет автоматизировать диагностику.


Связываясь с лигандами, выдыхаемые человеком ЛОВ меняют электрическое сопротивление между наночастицами или нанотрубками, после чего сигнал обрабатывается алгоритмом. Система испытывалась на образцах дыхания 1404 человек из пяти стран (Израиля, Франции, США, Китая и Латвии). Большинство испытуемых (813 человек) являлись пациентами местных клиник.

Всего в работе рассматривались 17 заболеваний, в том числе рак легких, болезнь Крона, болезнь Паркинсона, рассеянный склероз, язвенный колит и другие. По итогам обучения алгоритма (ранее он тестировался на более чем 8000 пациентов) точность единовременного распознавания отдельного заболевания составила 86 процентов. Система также оказалась способна к параллельной диагностике.

По мнению авторов, несмотря на хороший показатель распознавания, метод не является полностью универсальным. Так, с диагностикой ряда заболеваний, например рака простаты, система не справилась — более уместными в их случае могут быть тесты, не связанные с ЛОВ. Сейчас ученые работают над мобильностью прибора: его планируется адаптировать к смартфонам и другой электронике.


Источник: naked-science.ru

Комментарии: