Нейробиология и искусственный интеллект: часть третья – представление данных и память |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-01-21 14:10 Продолжение.
Глава 1: Нейробиология и искусственный интеллект: часть первая — ликбез. Глава 1.5: Нейробиология и искусственный интеллект: часть полуторная – новости от Blue Brain Project. Глава 2: Нейробиология и искусственный интеллект: часть вторая – интеллект и представление информации в мозгу. Рис. 1 Ну что же, прописные истины закончились. Теперь переходим к спорным вещам. Не буду описывать, как важна память для любой системы процессинга информации. Однако с человеческой памятью все очень непросто. В принципе, мы выяснили, что есть сигналы, которые путешествуют по нейронам, есть возбуждающие и ингибирующие синапсы, которые контролируют прохождение сигналов, есть нейромодуляторы, которые изменяют восприимчивость синапсов к сигналам, но каким образом это все работает вместе, что в итоге получается осмысленная когнитивная деятельность? Далеко не факт, что если собрать такую систему с миллионами нейронов, она заработает адекватно, а не как, скажем, эпилептик. Это дает повод спекулировать об альтернативных теориях сознания, в которых берут какой-нибудь малоизученный эффект и объявляют его панацеей. Одна из таких теорий была выдвинута Р. Пенроузом и С. Хамероффом – квантовая теория сознания, основанная на теоретических предпосылках к квантовому взаимодействию тубулиновых микротрубочек, составляющих цитоскелет нейронов. Если будут желающие, могу обсудить эту теорию в отдельной главе, а пока вернемся к более проверенным теориям. Итак, прежде чем браться за человека с его сотней миллиардов нейронов, было бы неплохо посмотреть, что творится в более простых случаях. А в простейшем случае, когда эффект памяти можно определить как “изменение реакции на повторяющееся раздражение”, его можно наблюдать на примере нервной системы червей C. elegans, у которого 302 нейрона и 5000 синапсов. Не смотря на такую рудиментарную нервную систему, C. elegans развили способность чувствовать температуру с точностью в 0.1° С и могут научиться ассоциировать ее с количеством доступной еды, тем самым давая нам возможность утверждать, что механизмы ассоциативной памяти могут работать и с небольшим количеством нейронов. Простота нейронной системы, в свою очередь, помогла ученым детально изучить механизмы, ответственные за возможность ассоциировать. В данном случае было выяснено, что количество производимого кальций-связывающего протеина Ce-NCS-1 прямо пропорционально способности обучаться. Причем этот протеин производится как в нейронах непосредственно чувствующих температуру, так и в проводящих сигнал нейронах (вставочный, промежуточный нейрон, interneuron), и прямо влияет на свойства синапсов между ними. Вставочные же нейроны уже собирают и интегрируют информацию с температурных и обонятельных нейронов. Занимательная штука тут, что этот протеин принадлежит к группе кальций-чувствительных протеинов, которые можно найти везде, от дрожжей до людей [1]. Более сложные механизмы, такие как формирование условных и безусловных рефлексов, изучаются, например, на мухах дрозофилах, в основном путем выключения определенных генов. Например, мухи с выключенной экспрессией допамина и серотонина отказывались усваивать новую ассоциативную информацию. Ежели экспрессия была просто снижена, то степень обучаемости зависила от количества этих нейротрансмиттеров. При этом важно заметить, что если таких мух удалось обучить чему-то, то они уже не забывали это. Получается, что эти нейтротранмиттеры ответственны скорее за обучение, нежели за память. Важный аспект, то что у дрозофил уже появляется разделение на кратковременную и долговременную память, за которые ответственны разные области мозга. В частности, можно вырастить мух, которые будут вполне помнить ассоциативные правила в течение только нескольких секунд. Разделение на кратковременную и долговременную память происходит из динамической природы работы нейронов (они же общаются паттернами спайков), необходимости поддерживать определенную активность в течение некоторого периода времени (чтобы информация из разных отделов мозга успела интегрироваться) и необходимости хранить полученный в результате опыт (а вот он уже вряд ли хранится в виде паттернов спайков). Для теории (искусственного) интелекта же такое разделение, вообще говоря, не обязательно: если уж мы будем знать как представлять и обрабатывать информацию, то как хранить ее на компьютере мы уже представляем себе. Плюс к этому, я пока не встречал исследований, показывающих обработку знаний в долговременной памяти без привлечения кратковременной (хотя сама обработка имеет место быть, например, в случаях когда мы вспоминаем что-то из прошлого. Тогда, кстати, долговременная память, вообще говоря, перезаписывается заново, и поэтому, если вы что-то вспоминаете часто, то со временем становится трудно отделить реальность от домыслов). Поэтому далее я буду в основном говорить о кратковременной памяти. Ее в свою очередь можно разделить на “мгновенную” (immediate memory), имеющую большой объем, но охватывающую временной диапазон от долей секунды, до нескольких секунд, и рабочую (working memory) – охватывающую от нескольких секунд до нескольких минут. Исследования на обезьянах показали, что информация о стимуле может поддерживаться постоянной активацией нейронов в течение нескольких секунд после исчезновения самого стимула, и есть модели нейросетей, которые успешно такие процессы моделируют [2]. Общее правило хранения информации можно описать следующим образом: чем более длительная память, тем меньше в ней хранится детальной информации о стимуле и больше абстрактной, концептуализированной. Механизмы мгновенной памяти обеспечиваются непосредственно в тех областях коры головного мозга, где идет обработка сенсорной информации [3,4] (о чем мы говорили в предыдущей главе), а вот рабочая память, как более глобальная, включает в себя механизмы не только коры головного мозга (неокортекс), но и его Какие молекулярные механизмы могут быть задействованы для реализации кратковременной памяти? Кратковременная синаптическая пластичность проявляется как ослабление или усиление следующего сигнала после предыдущего. Обычно, если 2 сигнала приходят быстро (<20 мс), то второй ослабляется в силу локального уменьшения количества пузырьков с нейромедиатором или деактивации потенциал-зависимых протеинов. Если между двумя сигналами проходит 20-500 мс, то второй сигнал зачастую производит больший эффект. В случае слабых синапсов одного сигнала может не хватить чтобы деполяризовать пост-синаптическую мембрану, и второй сигнал, как бы, воспользуется высвобожденными нейротрансмиттерами от первого как стартовой площадкой, повышая вероятность успешной передачи сигнала. Так же наблюдаются и более длительные эффекты, такие как усиление (facilitation) синаптической связи (разделяется на быстродействующее – порядка 10мс и долгое – сотни мс), пост-судорожная потенциация (post-tetanic potentiation) – до нескольких минут, а так же ослабление (depression), связанное как с истощением нейромедиаторов, так и с воздействием накапливающегося количества медиаторов внутри синапса (homosynaptic) и/или приходящим от соседних синапсов (heterosynaptic). Вместе эти процессы могут быть ответственны за локализацию паттернов возбуждения в некоторой области: одни не дают паттернам расползаться по нейронной сети, а другие – поддерживают активность паттерна. Рис. 2. Активация нейронов места в зависимости от положения в лабиринте (активность разных нейронов показана разным цветом). Важность возможности локализации паттернов возбуждения можно уже было оценить в предыдущей главе из рис. 6. Интересно то, что в гиппокампе (и не только) крыс (и не только), структуре прямо не связанной со зрительной корой, можно выделить такие высокоспециализированные клетки, которые активизируются если крыса уже визуально знакома с местом [5] (рис. 2). Причем, их активность мало зависит от, например, освещенности местности, т.е. они скорее связаны с текущем представлением крысы о месте пребывания, нежели с непосредственным наблюдением оного. Такие клетки называют “place cell” – клетками места. Так вот в таких клетках возбуждение поддерживается в течение всего времени, пока крыса пребывает в соответствующем месте. А поскольку подобное поведение клеток было замечено не только в гиппокампе, выдвигаются теории, что такая пространственная информация служит общим “ярлыком” для согласованного взаимодействия различных структур мозга с целью обеспечения возможности организации адаптивного поведения. Хочется так же отметить, что “все дороги ведут в гиппокамп“, и, несмотря на то что не все виды памяти завязаны на гиппокамп (например, с поврежденным гиппокампом можно научиться играть на музыкальных инструментах), он играет важную роль как в формировании памяти, так и в интеграции текущей визуальной информации и соответствующей информации в рабочей памяти. Рис. 3. Взаимодействие различных структур мозга для координации движения. Ну вот как-то так. Отсюда и следуют принципы, закладываемые в искусственные интеллектуальные системы: ассоциативность и контент-адресуемость для моделей памяти, а так же возможности обучения, классификация, планирование, методы решения других проблем. Много вопросов остается о представлении данных. Джеф Хоккинс, который в частности придумал компанию Palm и ее наладонники, предлагает моделировать память и представление информации в ней с помощью иерархически-временной модели (hierarchy temporal model), которую уже описывали здесь и которая прямиком следует из структуры неокортекса. Хотя при всех несомненно интересных идеях, пока сильного ИИ никому не удалось сделать. Значит истина где-то рядом. [1] – Elements of Molecular Neurobiology, 3d ed., C. Smith, 2002 [2] – A Spiking Network Model of Short-Term Active Memory, D. Zipser et al., The Journal of Neuroscience, 1993, 13(8), 3406-3420 [3] – Neuroscience, 3d ed., D. Purves, 2004 [4] – The Prefrontal Cortex as a Model System to Understand Representation and Processing of Information, Representation and Brain, S. Funahashi, 2006, XII, 311-366. [5] – A Neural Systems Analysis of Adaptive Navigation, S. Mizumori et al., Molecular Neurobiology, 2000, 21, 57-82 Источник: habrahabr.ru Комментарии: |
|