8 сфер и 19 самых интересных применений технологий Big Data

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Где сегодня используются технологии Big Data? Что реально дают Большие Данные? Мы подобрали для вас самые интересные примеры применения.

Вы же знаете эту известную шутку? Big Data — это как секс до 18:

  • все об этом думают;
  • все об этом говорят;
  • все думают, что их друзья это делают;
  • почти никто этого не делает;
  • тот, кто это делает, делает это плохо;
  • все думают, что в следующий раз лучше получится;
  • никто не принимает мер безопасности;
  • любому стыдно признаться в том, что он чего-то не знает;
  • если у кого-то что-то получается, от этого всегда много шума.

Но давайте начистоту, с любой шумихой рядом всегда будет идти обычное любопытство: что за сыр-бор и есть ли там что-то действительно важное? Если коротко — да, есть. Подробности — ниже. Мы отобрали для вас самые удивительные и интересные применения технологий Big Data. Это небольшое исследование рынка на понятных примерах сталкивает с простым фактом: будущее не наступает, не нужно «подождать еще n лет и волшебство станет реальностью». Нет, оно уже пришло, но все еще незаметно глазу и поэтому припекание сингулярности еще не обжигает известную точку рынка труда так сильно. Поехали.

Содержание

  • 1 Как применяются технологии Big Data там, где они зародились
  • 2 Большие Данные на 4 колесах
  • 3 Применение Больших Данных в медицине
  • 4 Анализ данных уже стал стержнем розничной торговли
  • 5 Большие Данные на страже закона и порядка
  • 6 Как технологии Big Data помогают развиваться городам
  • 7 Двигатель прогресса в сфере маркетинга и продаж
  • 8 Анализ данных в масштабах планеты

1 Как применяются технологии Big Data там, где они зародились

Большие IT компании — то место, где зародилась наука о данных, поэтому их внутренняя кухня в этой области интереснее всего. Кампания Google, родина парадигмы Map Reduce, создала внутри себя целое подразделение, единственной целью которого является обучение своих программистов технологиям машинного обучения. И в этом кроется их конкурентное преимущество: после получения новых знаний, сотрудники будут внедрять новые методы в тех проектах Google, где они постоянно работают. Представьте себе, насколько огромен список сфер, в которых кампания может совершить революцию. Один из примеров: нейронные сети используются для оптимизации затрат энергии в центрах обработки данных.

Корпорация Apple также не отстает от поискового гиганта и внедряет машинное обучение во все свои продукты. Ее преимущество — наличие большой экосистемы, в которую входят все цифровые устройства, используемые в повседневной жизни. Это позволяет Apple достигать невозможного уровня: у кампании есть столько данных о пользователях, сколько нет ни у какой-либо другой. При этом, политика конфиденциальности очень строгая: корпорация всегда хвасталась тем, что не использует данных клиентов в рекламных целях. Соответственно, информация пользователей шифруется так, что юристы Apple или даже ФБР с ордером не смогут ее прочесть. По ссылке вы найдете большой обзор разработок Apple в сфере ИИ.

2 Большие Данные на 4 колесах


Современный автомобиль — накопитель информации: он аккумулирует все данные о водителе, окружающей среде, подключенных устройствах и о себе самом. Уже скоро одно транспортное средство, которое подключено к сети наподобие той, что объединяет электромобили Tesla Model S, будет генерировать до 25 Гб данных за час.

Транспортная телематика используется автопроизводителями на протяжении многих лет, но сейчас лоббируется более сложный метод сбора данных, который в полной мере задействует Big Data. А это значит, что теперь технологии могут оповестить водителя о плохих дорожных условиях путем автоматической активации антиблокировочной тормозной и пробуксовочной системы.

Другие концерны, включая BMW, используют технологии Большиx Данных в сочетании со сведениями, собранными с тестируемых прототипов, встроенной в автомобили системой «памяти ошибок» и клиентскими жалобами, чтобы на ранней стадии производства определить слабые места модели. Теперь вместо ручной оценки данных, которая занимает месяцы, применяется современный алгоритм. Ошибки и затраты на их устранение уменьшаются, что позволяет ускорить рабочие процессы анализа информации в BMW.

Согласно экспертным оценкам, к 2019 году оборот рынка подключенных в единую сеть автомобили, достигнет $130 млрд. Это неудивительно, если учитывать темпы интеграции автопроизводителями технологий, которые являются неотъемлемой частью транспортного средства.

Использование Больших Данных помогает сделать машину более безопасной и функциональной. Так, компания Toyota путем встраивания информационных коммуникационных модулей (DCM) подключает новые автомобили к Toyota Big Data Center. Этот инструмент, использующийся для Больших Данных, обрабатывает и анализирует данные, собранные DCM, чтобы в дальнейшем извлекать из них пользу.

3 Применение Больших Данных в медицине


Реализация технологий Big Data в медицинской сфере позволяет врачам более тщательно изучить болезнь и выбрать эффективный курс лечения для конкретного случая. Благодаря анализу информации, медработникам становится легче предсказывать рецидивы и предпринимать превентивные меры. Как результат — более точная постановка диагноза и усовершенствованные методы лечения.

Новая методика позволила взглянуть на проблемы пациентов с другой стороны, что привело к открытию ранее неизвестных источников проблемы. Например, некоторые расы генетически более предрасположены к заболеваниям сердца, нежели представители других этнических групп. Теперь, когда пациент жалуется на определенное заболевание, врачи берут во внимание данные о представителях его расы, которые жаловались на такую же проблему. Сбор и анализ данных позволяет узнавать о больных намного больше: от предпочтений в еде и стиля жизни до генетической структуры ДНК и метаболитах клеток, тканей, органов. Так, Центр детской Геномной медицины в Канзас-Сити использует технологии анализа данных для быстрой расшифровки ДНК пациентов и анализа мутаций генетического кода, которые вызывают рак. Индивидуальный подход к каждому пациенту с учетом его ДНК поднимет эффективность лечения на качественно иной уровень.

С понимания того, как используются Большие Данные, вытекает первое и очень важное изменение в медицинской сфере. Когда пациент проходит курс лечения, больница или другое здравоохранительное учреждение может получить много значимой информации о человеке. Собранные сведения используются для прогнозирования рецидивов заболеваний с определенной степенью точности. Например, если пациент перенес инсульт, врачи изучают сведения о времени нарушения мозгового кровообращения, анализируют промежуточный период между предыдущими прецедентами (в случае возникновения таковых), обращая особое внимание на стрессовые ситуации и тяжелые физические нагрузки в жизни больного. На основании этих данных, больницы выдают пациенту четкий план действий, чтобы предотвратить возможность инсульта в будущем.

Свою роль играют и носимые устройства, которые помогают выявлять проблемы со здоровьем, даже если у человека нет явных симптомов той или иной болезни. Вместо того чтобы оценивать состояние пациента путем длительного курса обследований, врач может делать выводы на основании собранной фитнес-трекером или «умными» часами информации.

Один из последних примеров — случай в Лурдском медицинском центре Богоматери в Нью-Джерси. В то время как пациент проходил обследование из-за нового приступа судороги, вызванного пропущенным приемом лекарств, врачи обнаружили, что мужчина имеет куда более серьезную проблему со здоровьем. Этой проблемой оказалась фибрилляция предсердий. Диагноз удалось поставить благодаря тому, что сотрудники отделения получили доступ к телефону пациента, а именно к приложению, сопряженному с его фитнес-трекером. Данные с приложения оказались ключевым фактором в определении диагноза, ведь на момент обследования у мужчины никаких сердечных отклонений обнаружено не было.

Это лишь один из немногих случаев, который показывает, почему использование Больших Данных в медицинской сфере сегодня играет столь значимую роль.

4 Анализ данных уже стал стержнем розничной торговли

Понимание пользовательских запросов и таргетинг — одна из самых больших и максимально освещенных широкой публике областей применения инструментов Big Data. Большие Данные помогают анализировать клиентские привычки, чтобы в дальнейшем лучше понимать запросы потребителей. Компании стремятся расширить традиционный набор данных информацией из социальных сетей и историей поиска браузера с целью формирования максимально полной клиентской картины. Иногда крупные организации в качестве глобальной цели выбирают создание собственной предсказательной модели.

Например, сети магазинов Target с помощью глубинного анализа данных и собственной системы прогнозирования удается с высокой точностью определить — беременна женщина или нет. За каждым клиентом закрепляется ID, который в свою очередь привязан к кредитке, имени или электронной почте. Идентификатор служит своеобразной корзиной покупок, где хранится информация обо всем, что когда-либо человек приобрел. Специалистами сети установлено, что женщины в положении активно приобретают неароматизированные средства перед вторым триместром беременности, а в течение первых 20 недель налегают на кальциевые, цинковые и магниевые добавки. На основании полученных данных Target отправляет купоны на детские товары клиентам. Сами же скидки на товары для детей «разбавляются» купонами на другие продукты, чтобы предложения купить кроватку или пеленки не выглядели слишком навязчивыми.

Даже правительственные ведомства нашли способ, как использовать технологии Big Data для оптимизации избирательных кампаний. Некоторые считают, что победа Б. Обамы на президентских выборах США в 2012 году обусловлена превосходной работой его команды аналитиков, которые обрабатывали огромные массивы данных в правильном ключе.

5 Большие Данные на страже закона и порядка


За последние несколько лет правоохранительным структурам удалось выяснить, как и когда использовать Большие Данные. Общеизвестным фактом является то, что Агентство национальной безопасности применяет технологии Больших Данных, чтобы предотвратить террористические акты. Другие ведомства задействуют прогрессивную методологию, чтобы предотвращать более мелкие преступления.

Департамент полиции Лос-Анджелеса применяет собственную аналитическую систему. Она занимается тем, что обычно называют проактивной охраной правопорядка. Используя отчеты о преступлениях за определенный период времени, алгоритм определяет районы, где вероятность совершения правонарушений является наибольшей. Система отмечает такие участки на карте города небольшими красными квадратами и эти данные тут же передаются в патрульные машины.

Копы Чикаго используют технологии Больших Данных немного другим образом. У блюстителей правопорядка из Города ветров также есть специальный алгоритм, но он направлен на очерчивание «круга риска», состоящего из людей, которые могут оказаться жертвой или участником вооруженного нападения. По информации газеты The New York Times, данный алгоритм присваивает человеку оценку уязвимости на основании его криминального прошлого (аресты и участие в перестрелках, принадлежность к преступным группировкам). Разработчик системы уверяет, что в то время как система изучает криминальное прошлое личности, она не учитывает второстепенных факторов вроде расы, пола, этнической принадлежности и месторасположения человека.

6 Как технологии Big Data помогают развиваться городам


Генеральный директор Veniam Жоао Баррос демонстрирует карту отслеживания Wi-Fi-роутеров в автобусах города Порту

Анализ данных также применяется для улучшения ряда аспектов жизнедеятельности городов и стран. Например, зная точно, как и когда использовать технологии Big Data, можно оптимизировать потоки транспорта. Для этого берется в расчет передвижение автомобилей в режиме онлайн, анализируются социальные медиа и метеорологические данные. Сегодня ряд городов взял курс на использование анализа данных с целью объединения транспортной инфраструктуры с другими видами коммунальных услуг в единое целое. Это концепция «умного» города, в котором автобусы ждут опаздывающий поезд, а светофоры способны прогнозировать загруженность на дорогах, чтобы минимизировать пробки.

На основе технологий Больших Данных в городе Лонг-Бич работают «умные» счетчики воды, которые используются для пресечения незаконного полива. Ранее они применялись с целью сокращения потребления воды частными домовладениями (максимальный результат — сокращение на 80%). Экономия пресной воды — вопрос актуальный всегда. Особенно, когда государство переживает самую сильную засуху, которая когда-либо была зафиксирована.

К перечню тех, кто использует Big Data, присоединились представители Департамента транспорта города Лос-Анджелеса. На основании данных, полученных от датчиков дорожных камер, власти производят контроль работы светофоров, что в свою очередь позволяет регулировать траффик. Под управлением компьютеризованной системы находится порядка 4?500 тысяч светофоров по всему городу. Согласно официальным данным, новый алгоритм помог уменьшить заторы на 16%.

7 Двигатель прогресса в сфере маркетинга и продаж


В маркетинге инструменты Big Data позволяют выявить, продвижение каких идей на том или ином этапе цикла продаж является наиболее эффективным. С помощью анализа данных определяется, как инвестиции способны улучшить систему управления взаимоотношениями с клиентами, какую стратегию следует выбрать для повышения коэффициента конверсии и как оптимизировать жизненный цикл клиента. В бизнесе, связанном с облачными технологиями, алгоритмы Больших Данных применяют для выяснения того, как минимизировать цену привлечения клиента и увеличить его жизненный цикл.

Дифференциация стратегий ценообразования в зависимости от внутрисистемного уровня клиента — это, пожалуй, главное, для чего Big Data используется в сфере маркетинга. Компания McKinsey выяснила, что около 75% доходов среднестатистической фирмы составляют базовые продукты, на 30% из которых устанавливаются некорректные цены. Увеличение цены на 1% приводит к росту операционной прибыли на 8,7%.

Исследовательской группе Forrester удалось определить, что анализ данных позволяет маркетологам сосредоточиться на том, как сделать отношения с клиентами более успешными. Исследуя направление развития клиентов, специалисты могут оценить уровень их лояльности, а также продлить жизненный цикл в контексте конкретной компании.

Оптимизация стратегий продаж и этапы выхода на новые рынки с использованием геоаналитики находят отображение в биофармацевтической промышленности. Согласно McKinsey, компании, занимающиеся производством медикаментов, тратят в среднем от 20 до 30% прибыли на администрирование и продажи. Если предприятия начнут активнее использовать Большие Данные, чтобы определить наиболее рентабельные и быстро растущие рынки, расходы будут немедленно сокращены.

Анализ данных — средство получения компаниями полного представления относительно ключевых аспектов их бизнеса. Увеличение доходов, снижение затрат и сокращение оборотного капитала являются теми тремя задачами, которые современный бизнес пытается решить с помощью аналитических инструментов.

Наконец, 58% директоров по маркетингу уверяют, что реализация технологий Big Data прослеживается в поисковой оптимизации (SEO), e-mail- и мобильном маркетинге, где анализ данных отыгрывает наиболее значимую роль в формировании маркетинговых программ. И лишь на 4% меньше респондентов уверены, что Большие Данные будут играть значимую роль во всех маркетинговых стратегиях на протяжении долгих лет.

8 Анализ данных в масштабах планеты

Не менее любопытно то, как эти технологии применяются для снижения влияния человека на Землю. Возможно, что именно машинное обучение в конечном счете будет единственной силой, способной поддерживать хрупкое равновесие. Тема влияния человека на глобальное потепление до сих пор вызывает много споров, поэтому только достоверные предсказательные модели на основе анализа большого объема данных могут дать точный ответ. В конечном счете, снижение выбросов поможет и нам всем: мы будем меньше тратиться на энергию.


Сейчас Big Data — это не абстрактное понятие, которое, может быть, найдет свое применение через пару лет. Это вполне рабочий набор технологий, способный принести пользу практически во всех сферах человеческой деятельности: от медицины и охраны общественного порядка до маркетинга и продаж. Этап активной интеграции Больших Данных в нашу повседневную жизнь только начался, и кто знает, какова будет роль Big Data уже через несколько лет?


Источник: ru.datasides.com

Комментарии: