Общий круг задач, решаемых искусственными нейронными сетями

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Классификация образов.Задача состоит в указании принадлежности входного образа (например, речевого сигнала или рукописного символа), представленного вектором признаков, одному или нескольким предварительно определенным классам. К известным приложениям относятся распознавание букв, распознавание речи, классификация сигнала электрокардиограммы, классификация, клеток крови. К примеру, нейросетевые алгоритмы распознавания объектов на изображении изложены в этой статье.

Кластеризация/категоризация. При решении задачи кластеризации, которая известна также как классификация образов «без учителя», отсутствует обучающая выборка с метками классов. Алгоритм кластеризации основан на подобии образов и помещает близкие образы в один кластер. Известны случаи применения кластеризации для извлечения знаний, сжатия данных и исследования свойств данных.

Аппроксимация функций. Предположим, что имеется обучающая выборка ((x1, y1), (x2, y2) …, (xN, yN))(пары данных вход-выход), которая генерируется неизвестной функцией F(x), искаженной шумом. Задача аппроксимации состоит в нахождении оценки неизвестной функции F(x). Аппроксимация функций необходима при решении многочисленных инженерных и научных задач моделирования.

Предсказание/прогноз. Пусть заданы nдискретных отсчетов {y(t1), y(t2) …, y(tk)}в последовательные моменты времени t1, t2, …, tk.Задача состоит в предсказании значения y(tk+1)в некоторый будущий момент времени tk+1. Предсказание/прогноз имеют значительное влияние на принятие решений в бизнесе, науке и технике. Предсказание цен на фондовой бирже и прогноз погоды являются типичными приложениями техники предсказания/прогноза.

Стоит отметить, что описанная выше проблема является наиболее актуальной, так как в настоящей работе при помощи ИНС решается задача прогнозирования концентрации опасного химического вещества (ОХВ) в атмосфере после аварии на химически опасном объекте.

Оптимизация. Многочисленные проблемы в математике, статистике, технике, науке, медицине и экономике могут рассматриваться как проблемы оптимизации. Задачей алгоритма оптимизации является нахождение такого решения, которое удовлетворяет системе ограничений и максимизирует или минимизирует целевую функцию.

Память, адресуемая по содержимому. Ассоциативная память, или память, адресуемая по содержимому, доступна по указанию заданного содержимого. Содержимое памяти может быть вызвано даже по частичному входу или искаженному содержимому. Ассоциативная память чрезвычайно желательна при создании мультимедийных информационных баз данных.

Управление. Рассмотрим динамическую систему, заданную совокупностью {u(t), y(t)}, где u(t)является входным управляющим воздействием, а y(t)– выходом системы в момент времени t.В системах управления с эталонной моделью целью управления является расчет такого входного воздействия u(t), при котором система следует желаемой траектории, диктуемой эталонной моделью. Примером является оптимально управление двигателем.

Как видно из вышеперечисленного, НС являются универсальным математическим аппаратом. В зависимости от парадигмы и структуры НС может успешно решить практически любую задачу.


Источник: neuronus.com

Комментарии: