Нейросеть впервые запустили на спинтронном чипе |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2016-12-24 00:38 искусственный интеллект, реализация нейронной сети, распознавание образов Исследователи Университета Тохоку, Япония, сообщили о первом в мире успешном эксперименте работы искусственного интеллекта на базе энергонезависимого спинтронного устройства. Описание эксперимента опубликовано в журнале Applied Physics Express. Разработки в области искусственного интеллекта направлены на создание вычислительных систем, которые могли бы воспринимать и обрабатывать информацию так же, как это делает человек. Например, использовать ассоциации при распознавании образов. Классические полупроводниковые микросхемы, используемые для решения таких задач, оказываются достаточно громоздкими и довольно энергозатратными по сравнению с человеческим мозгом. Решить проблему энергопотребления может спинтроника — электроника, работающая со спиновыми (спин-поляризованными) токами. Ее отличие от традиционной электроники заключается в том, что если в обычном электрическом токе перемещаются заряды, то в электронике нового поколения перемещаются спины электронов. Спин электрона может находиться в одном из двух состояний ? либо направление спина совпадает с направлением намагниченности магнитного материала, либо спин и намагниченность разнонаправлены, причем переворот спина практически не требует затрат энергии, а если изменить направление спина, то кинетическая энергия электрона не изменится — то есть тепла почти не выделяется. Таким образом, спиновая электроника обеспечивает быстродействие, а также низкое энергопотребление и тепловыделение — в сочетании эти свойства идеально подходят для основы устройств с искусственным интеллектом. Новая работа на базе твердотельного спинтронного устройства реализует один из самых распространенных вариантов нейросети — нейронную сеть Хопфилда. Одно из ее применений — автоматическая ассоциативная память. Нейронная сеть этой модели умеет запоминать эталонные образы и находить похожие на них паттерны среди зашумленных входных данных. При этом модель показывает, каким образом может быть организована память в сети из элементов, которые не являются очень надежными. Экспериментальные данные показывают, что даже при увеличении количества вышедших из строя нейронов до 50 процентов, вероятность правильного ответа остается близка к 100 процентам. Продемонстрированное устройство может «запоминать» произвольное значение между 0 и 1, обучаясь в аналоговом режиме — до некоторой степени это соответсвует принципам обучения живого мозга на основе пластичности проводимости в синапсах. мозга. Устройство включает в себя аналоговую схему на базе тридцати шести спинтронных синапсов, плату для генерации электрических импульсов, и программный модуль. Веса в нейросети задают величины сопротивления в синапсах. А на них, в свою очередь, влияет сила электрического импульса, которая рассчитывается в зависимости от текущего сопротивления схемы. Модель Хопфилда обновляет веса до достижения положения равновесия. Экспериментальная проверка устройства показала, что обучение модели проходит довольно эффективно и в результатет такого обучения спинтронная нейросать может корректно распознавать простые черно-белые паттерны размером 3?3 пикселя. Ученые рассчитывают, что проведенный эксперимент откроет новые горизонты в технологиях искусственного интеллекта: компактный размер нового устройства и возможность быстрой обработки данных при сверхнизких энергозатратах сможет обеспечить его использование в для распознавания изображений, в носимых устройствах и роботах. Для этого, конечно, понадобится разаботать способ масштабирования простого устройства-прототипа до сложности, соотвествующей современной электронике. Надежда Бессонова Источник: nplus1.ru Комментарии: |
|