Михаил Гельфанд: «Каждый кричащий о страшном вреде ГМО ответственен за слепых детей в Азии» |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2016-12-17 21:15 Что такое биоинформатика? Почему клонирование мамонтов – это откровенное надувательство? Кому, на самом деле, выгодно распространять миф о вреде ГМО-продуктов, и почему благодаря глобальной устойчивости болезней к антибиотикам мы возвращаемся к началу XX века? Об этом и многом другом мы поговорили с Михаилом Гельфандом – выдающимся российским биоинформатиком, профессором МГУ и членом Европейской академии. Михаил Сергеевич Гельфанд – известный российский биоинформатик, доктор биологических наук, кандидат физико-математических наук, профессор факультета биоинженерии и биоинформатики МГУ, член Европейской Академии, заместитель директора Института проблем передачи информации РАН, член Общественного совета при Министерстве образования и науки РФ, заместитель главного редактора газеты «Троицкий вариант – наука». Сфера научных интересов: сравнительная геномика, метагеномика, метаболическая реконструкция и функциональная аннотация генов и белков, поиск регуляторных сигналов, эволюция метаболических путей и регуляторных систем, альтернативный сплайсинг (процесс, позволяющий одному гену производить несколько мРНК и, соответственно, белков – NS), статистические особенности последовательностей ДНК. Михаил Гельфанд известен также своей гражданской активностью. Он является одним из основателей и активистов сетевого сообщества «Диссернет», занимающегося выявлением злоупотреблений, махинаций и подлогов в области защиты диссертаций и присвоения ученых степеней в России. – Биоинформатика – это такой способ заниматься биологией, который требует обработки очень большого количества данных. С биологией вообще происходит то же самое, что когда-то произошло с физикой высоких энергий и с астрофизикой, когда стало очень много данных. Оказывается, что используя всю эту информацию, можно сделать много интересного. К примеру, то чем мы занимаемся сейчас – предсказание функций белков, изучение того, как регулируется работа генов и пр. Это делается при помощи анализа последовательностей, а результат формулируется в естественных для биологов терминах: скажем, этот белок делает то и то, а этот ген включается в таких-то условиях. Помимо этого, благодаря биоинфрматике, появилась возможность делать утверждения о клетке в целом. В определенном смысле молекулярная биология раньше была редукционистской наукой – клетку смотрели по частям, раскладывали ее на отдельные гены, отдельные белки. Сейчас же стало возможным исследовать ее на молекулярном уровне целиком. До этого заниматься этим мы не могли – не хватало возможностей. Но все это – техническая сторона биоинформатики. Фундаментальная сторона – это изучение молекулярной эволюции. Оказалось, что сравнивая те геномы, которые мы имеем сейчас, можно что-то говорить о том, как они менялись во времени. Грубо говоря, как получилось то, что получилось. Это, вероятно, самое интересное в биоинформатике. – Например, стало ясно, что многоклеточность возникала не один раз, а несколько раз независимо. Когда меня учили в школе, меня учили так: сначала были бактерии, потом появились более сложные существа, затем многоклеточные и т. д., грибы с водорослями считали низшими растениями. Теперь оказалось, что у растений и животных многоклеточность возникла независимо с точки зрения их эволюционных путей. Грибы оказались даже ближе к нам, чем к растениям. Бурые водоросли вообще отъехали в другую сторону, у них тоже по-своему многоклеточность образовалась. Еще обнаружили, что наши предки гибридизировались с неандертальцами. Выяснилось, что были еще и денисовцы – далекие родственники неандертальцев. В целом эта ситуация показала, что возникновение современного человека – вопрос куда более сложный, чем нам казалось ранее. Ведь мы думали, что наша родословная – непрерывная ветвь, линия. Однако анализ геномов показал, что 50 тыс. лет назад по Евразии ходили три разных вида человека – кроманьонцы (мы и наши предки), неандертальцы и денисовцы, и все они скрещивались между собой в разных сочетаниях. В геноме каждого современного европейца или азиата (но не африканца) в среднем около 2% вариантов генов – это гены неандертальцев, а у людей, которые в свое время заселили Индонезию и Австралию, дополнительно присутствует 5% денисовских генов. Эти открытия важны с мировоззренческой точки зрения – они меняют наши представления о том, как возник человек. Вообще, с возникновением новых экспериментальных техник мы узнаем все больше нового, но оказывается, что очень многого мы все равно не знаем. Усиливается понимание того, сколько еще осталось открыть. В каком-то смысле это романтическое время. По этому поводу я рассказываю всегда одну и ту же метафору. Представьте, люди жили на берегу, думали, что это небольшой остров. Из-за дымки его не было видно. Когда дымка рассеялась, оказалось, что там целый континент. Да еще и с горами, за которыми уже совсем не ясно, что можно обнаружить. Примерно такая же ситуация и в современной науке. – Достижения были, опять же благодаря технологическому прогрессу. Научились определять геномную последовательности пар опухоль-здоровая ткань, и понимать, почему здоровая клетка стала опухолевой. Оказалось, что единственной причины нет, и даже на первый взгляд, одинаковые раковые клетки обладают рядом различий. В частности, из-за мутаций, которых в этих клетках очень много. Появилась нетривиальная задача – понять, какие мутации были причиной процесса, а какие просто случайно возникли. Сейчас начинаются опыты по секвенированию троек – здоровая клетка, рак и метастаз, чтобы определить, что приводит к метастазированию. Научились сегодня и секвенировать геномы единичных клеток. По поводу рака есть основания думать, что клеточная популяция этого заболевания очень неоднородна, и развитие рака происходит из-за мутаций, которые приводят к вытеснению одних популяций другими. Улучшению понимания поспособствует секвенирование отдельных раковых клеток, поэтому результатов этих опытов многие с интересом и ждут. Но на самом деле, я не очень люблю говорить на тему онкологии – не хочется напрасно обнадеживать людей. Повторю только то, что уже упомянул: рак может быть неоднороден – этим можно объяснить успех или неуспех того или иного лечения. Может быть и другая ситуация – опухоли в разных частях тела, но с одинаковой молекулярной структурой. И в этом случае одним лекарством можно лечить несколько разных типов опухолей, а определение структуры раковых клеток может помочь с подбором более эффективных противоопухолевых препаратов. – Это полный бред и надувательство. Сейчас никакой технической возможности сделать это нет – ни у нас, ни на Западе. В контексте клонирования обычно упоминают южнокорейского ученого (его имя – Хван у Сук – NS), который известен тем, что сфальсифицировал свои результаты. Он действительно клонировал собаку, потом заявил, что клонировал человека и выпустил пару сфальсифицированных статей, за которые его и выгнали из университета... Никто еще не умеет клонировать млекопитающего при помощи инъекции генетического материала в другое млекопитающее. На бактериях это делали, на млекопитающих – нет. Теоретически, это если и возможно, то очень сложно. Если, к примеру, развернуть ДНК человека, то получится линия длиной три метра. Даже если вы как-то умудритесь синтезировать ДНК такой длины, как хромосома у мамонта, вы не сможете воспроизвести ее правильное физиологическое состояние. Если ввести чудом воспроизведенную в пробирке ДНК другому млекопитающему, она там просто не приживется и деградирует. В целом возникают такие трудности, решить которые на данный момент не представляется возможным. – ДНК и правда столько не живет. Рекорд – примерно сотни тысяч лет. С ДНК, которой десятки тысяч лет, эксперименты проводят – с теми же неандертальцами, например. ДНК, найденная в костях Гейдельбергского человека в испанской пещере Сима-де-лос-Уэсос и впоследствии расшифрованная учеными, имела возраст приблизительно 400 тыс. лет. Но это была митохондриальная, а не ядерная ДНК. С течением времени ДНК разрушается. В живом организме есть механизмы, которые ее восстанавливают. Однако когда она лежит в земле, то ее разрушению уже ничего не мешает, особенно во влажном и теплом климате. Медленнее разрушаются белки. Были статьи, где люди утверждали, что им удалось определить последовательность белков-коллагенов у динозавра. В научном сообществе тогда были большие разногласия – многие считали, что это ошибка эксперимента. Можно пойти по другому пути: взять современные последовательности птиц, крокодилов, современных млекопитающих и рыб, Построить из этих белков филогенетическое древо – восстановить по последовательностям, как эти белки развивались в ходе эволюции. А затем реконструировать, как эти белки выглядели в определенном внутреннем узле – например, в узле динозавров, после чего синтезировать этот белок. Такого типа работы уже делали, в том числе с динозаврами. С помощью этого метода даже удалось синтезировать белки, которые присутствовали у общего предка всех бактерий. А еще те, кто плачет по динозаврам, могут пойти на улицу и поцеловаться с любым голубем – это прямой предок динозавра, та же самая эволюционная линия, которая сохранилась в современных птицах и в крокодилах. – Вред ГМО – это миф, потому что нет ни одного добросовестного эксперимента, который доказал бы этот вред. Эксперименты, про которые писали в газетах – это опыты очень низкого качества, которые ничего не доказывают. Там даже качество статистической обработки полученных данных низкое. Например, из результатов печально известного эксперимента французского исследователя Жиля-Эрика Сералини (Gilles-Eric Seralini) следует, что самцам крыс, наоборот, ГМО очень полезны – они дольше живут. Проверяли на самом деле довольно много. Все животноводство США – это один большой эксперимент по использованию генномодифицированных продуктов. Если бы ГМО действительно наносили вред, это стало бы заметно очень быстро. Отношение к ГМО в нашей стране – это печальная комбинация трех вещей. Первая – это, прошу прощения, невежество населения. Если вы сейчас остановите человека на улице и спросите о ГМО-помидорах, то он ответит, что в ГМО-помидоре гены есть, а в обычном помидоре их нет, или другую подобную глупость. Второе – это недобросовестность людей, которые на теме вреда ГМО делают политическую карьеру. Некоторые из них, может быть, действительно настоящие психи, но существенная доля таких людей, я уверен, являются расчетливыми циниками, которые просто улучшают свое благосостояние. Третье – это невежество журналистов. С одной стороны, они не в состоянии понять, правду ли им говорят или нет, с другой – гонятся за сенсацией. Ведь то, что ГМО не вредит здоровью – это не очень сенсационно. А вот показать фотографию страдающей от рака крысы из эксперимента Сералини, дать яркий заголовок – это сенсация. И мало кому известно, что на самом деле это специальная линия крыс, выведенная для исследования рака – у них у всех опухоли вырастают. Скажу больше – от ГМО есть реальная польза. Недавно читал статью, в которой ученые посчитали, насколько уменьшается нагрузка гербицидами и инсектицидами на поля, где выращивают ГМО-культуры. То есть реально вредные вещи – токсины – благодаря ГМО уже не так нужны, нагрузка на поле уменьшается в десятки процентов. ГМО полезны для экономики, особенно для развивающихся стран, к которым в плане сельского хозяйства относится и Россия. Так, производство ГМО-сои значительно менее затратное по сравнению с обычной соей. Сокращение закупок инсектицидов тоже уменьшает затраты. Еще один плюс ГМО – устранение авитаминоза. В некоторых продуктах не хватает витаминов, например, в рисе мало витамина А. Поэтому в Азии, где рис является основным продуктом рациона людей (опять же небогатых), распространен авитаминоз, в результате которого дети рождаются слепыми. Поэтому ученые сделали ГМО-рис, в который подсадили гены подсолнечника. Эти новые гены позволили рису вырабатывать каротин – то, что нужно для устранения авитаминоза и слепоты. Так что каждый человек, который бездумно орет про страшный вред ГМО, персонально ответственен за слепых детей. Также в ситуации с ГМО меня удивляют экологи. Можно же ведь, к примеру, обсуждать влияние ГМО-полей на экологию: данных про вред нет, но, чисто теоретически, это возможно. Вместо этого экологи, к сожалению, очень любят втиснуться в толпу антиГМОшников и использовать их недобросовестные приемы для борьбы за вроде бы благие экологические цели. – Вообще история антибиотиков – красивая иллюстрация эволюционной теории, описываемая четко в рамках естественного отбора. Антибиотики были всегда. Почвенные бактерии травили ими друг друга испокон веков. Соответственно они и защищаться учились, вырабатывая устойчивость. Эта устойчивость распространялась, когда бактерии поглощали ДНК устойчивых видов. Но затем в дело вмешался человек и начал лечиться антибиотиками от своих патогенов. Патогены изначально чувствительны к антибиотикам, потому что они не встречались с почвенными бактериями. Когда вы начинаете принимать антибиотики и пропиваете полный их курс, то убиваете всех патогенных организмов. Если же вы начали принимать, вам стало лучше, и вы перестали их принимать, то получается, что вы чувствительных бактерий убили, а немного устойчивых остались; они всегда есть просто в силу генетической неоднородности популяции. Потом опять популяция развивается, становится неоднородной, в ней появляются еще более устойчивые варианты – и опять то же самое: преждевременно прекращенный курс, менее устойчивые убиты, более устойчивые остались без конкурентов и размножились. В свое время был запущен российско-американский проект, в рамках которого в нескольких тюрьмах было усовершенствовано лечение туберкулеза с помощью современных средств (источником устойчивых штаммов являются тюрьмы и лагеря, причем в тюрьмах России довольно тяжелая ситуация с устойчивостью туберкулеза к антибиотикам), но, к сожалению, по политическим причинам он был свернут. При этом, как и говорится в докладе ВОЗ, одна из причин увеличения устойчивости болезней к антибиотикам – тотальная и систематическая практика недолечивания заболеваний среди населения всей планеты. Другой фактор увеличения устойчивости бактерий к антибиотикам – это западная мода подкармливать скот маленькими дозами антибиотиков. Сейчас в Евросоюзе такую практику запретили, но вред, который она уже успела принести, по-видимому, колоссален. Ведь патогены и у нас и у млекопитающих, которых разводят как скот, в общем, одинаковые. Но на фермах животные как раз таки контактируют с почвой, и патогены в них могут контактировать с теми самыми почвенными бактериями, которые выработали к ним устойчивость, что повышает и устойчивость вредных для нас патогенов. Дальше оказывается, что производить антибиотики невыгодно большим фармацевтическим компаниям (маленькие вообще не потянут). Антибиотики пьют коротким курсом, к ним очень быстро появляется устойчивость – все это означает, что на рынке препарат будет недолго. Получается, что делать антибиотики попросту неприбыльно. Что же касается, например, туберкулеза в нашей стране, который устойчив уже к большинству известных антибиотиков, то альтернатива антибиотикам может быть только одна. Как в начале прошлого века – кумыс, горные курорты… И все. Конечно, биологи и медики пытаются что-то с этим делать, но оптимизма пока немного. Интервью было опубликовано в журнале Naked Science (№17, январь 2015 г.). Источник: naked-science.ru Комментарии: |
|