Подходы к Big Data брендов массового потребления: опыт Lipton, Starbucks и Kroger |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2016-11-16 21:03 Старший руководитель международного направления Unilever Ансер Али выступил на конференции Performance Marketing Moscow, где поделился кейсами FMCG-брендов по использованию «больших данных». Также Али рассказал, какой подход к Big Data позволяет повысить лояльность и вовлеченность аудитории. Обзором лекции с vc.ru поделились представители агентства «Комплето». Основные проблемы FMCG: Это означает, что производители товаров должны: Performance-маркетинг, по мнению Али, — это прежде всего высокое качество обслуживания потребителя в нужное время и в нужном месте. Специалист уверен, что люди больше не покупают продукт — им важен опыт, эмоции и впечатления, которые он дает. По мнению Али, чтобы сделать потребительский опыт осмысленным и запоминающимся, FMCG-компании должны научиться использовать «большие данные». С его точки зрения, осмысленность возникает тогда, когда бренд очень хорошо знает своих клиентов. Это аналитика, которая отвечает на вопрос: «Что будет?» Одна из главных тенденций в этой сфере — мониторинг социальных медиа, который позволяет превратить «большие данные» в полезные и значительно улучшить потребительский опыт. Инструменты, которые помогают узнать ответы на вопросы о клиентах с помощью интеграции разных источников: Пример Lipton Chai Latte: что позволяет узнать предиктивная аналитика на основе мониторинга социальных сетей: 1. Когда именно люди говорят о чае латте и как это зависит от сезона: 2. Кто говорит о продукте больше всего: 3. Какой вкус чаще интересует аудиторию: миндаль, карамель, корица, эспрессо, тыква или ваниль: 4. Как клиенты хотят заваривать чай латте: с помощью капсул, концентрата или порошка: 5. Как и когда клиенты готовили чай латте дома: Бренд антиперспирантов Sure получил данные для предиктивной аналитики с помощью сотрудничества с компаниями, выпускающими фитнес-браслеты. Несколько вопросов, на которые Sure получил ответы: Сеть гостиниц Red Roof Inn использовала данные об отмене рейсов, чтобы увеличить число бронирований. В результате за год число бронирований номеров увеличилось на 10%. Это аналитика, которая отвечает на вопрос: «Как мы это реализуем?» Такой подход помогает маркетологам: Компании удалось уменьшить среднее время обслуживания покупателей с четырех минут до 30 секунд. В Kroger стали использовать специальные датчики для прогнозирования очередей и автоматического вызова сотрудников при необходимости. Компания может использовать сенсор, чтобы вычислить агрессивно настроенных или огорченных клиентов по голосу и соединить их с более опытными операторами. Чтобы предложить клиенту персонализированную страховку, можно использовать данные о стиле вождения, скоростном режиме и другом. Приложение Starbucks в США определяет расстояние от клиента до ближайшей точки продаж и позволяет сделать заказ до того, как человек зашел в кофейню. Бренд пользуется преимуществами мобильных приложений и сервисов для определения местоположения, чтобы помочь клиентам сэкономить время и сделать их более лояльными. Этот подход позволяет взаимодействовать с пользователем на основе его местоположения. Например, человек проходит мимо Starbucks и получает push-уведомление: «Привет! Ты сейчас возле Starbucks на Оксфорд-стрит. У нас проходит акция: 50% скидка на твой любимый напиток — ванильный латте». Возможности геолокационного маркетинга: Чтобы определять геолокацию, используются разные технологии, например, iBeacons. Такие сервисы основаны на использовании датчиков. Они с помощью Bluetooth определяют, где находится пользователь. Бренд Magnum создал приложение M-Pulse, в котором можно найти новых друзей, определить ближайшую точку продаж и пригласить людей поесть мороженое. Также приложение оповещает пользователей о скидках и акциях. Компании Neutrogena удалось совместить технологии, которые определяют местонахождение человека и погодные условия. Пользователь видит рекламу солнцезащитного средства, которое соответствует уровню ультрафиолетового излучения в той точке планеты, где он находится. Источник: vc.ru Комментарии: |
|