Нейропротез вернул парализованным макакам-резусам способность ходить

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Силиконовая модель мозга макаки резус с микрочипом, вживляемым в область моторной коры. Фото с сайта newscientist.com

Международной команде ученых удалось создать нейропротез для восстановления функции парализованных конечностей макак-резусов, которые отнялись после повреждения спинного мозга. Ученые воплотили в жизнь идею о передаче нервных импульсов, идущих от моторной области коры, к части спинного мозга, лежащей ниже повреждения. Для этого потребовалось разработать целый комплекс технологических приемов и устройств, не говоря уже о расшифровке картины нервных возбуждений, лежащих в основе ходьбы. Но в результате обезьяны с поврежденным спинным мозгом самостоятельно передвигаются!

Когда ученые делают работу, например, по расшифровке сигналов нейронов той или иной части нервной системы, или изучают различия возбуждений нейронов в небольшой области мозга, или, к примеру, с помощью мутантных линий учатся прослеживать путь отдельных нейронов, или пишут программы для вычленения специфического нейронного ответа из миллионов одновременных сигналов, то обычно говорят, что в конечном итоге «это исследование поможет лечить то или иное нейродегенеративное заболевание». Кажется, эта фраза вставляется для проформы, чтобы как-то оправдать чаяния налогоплательщиков, вынужденных платить за отвлеченные упражнения ученых. Но вот вчера в журнале Nature опубликована работа, в которой показано, как долгий путь «отвлеченных упражнений» воплотился в реальный и перспективный лечебный результат: приматы (макаки-резусы) начали ходить после повреждения спинномозговых нервов и паралича задних конечностей.

Вот какой путь для этого пришлось пройти. Хорошо и печально известно, что при разрывах (разрезах) нейронов спинного мозга в грудном или поясничном отделе наступает паралич нижних конечностей, но при этом при частичном разрыве конечность может постепенно восстановить способность двигаться. Значит, нейроны ниже разрыва сохраняют жизнеспособность и функциональность. Действительно, эксперименты по стимуляции участков спинного мозга ниже места разрыва показали, что конечность может двигаться.

Это навело ученых на мысль, что, в принципе, можно реконструировать картину возбуждения в двигательных центрах, которая возникает при движении конечностей во время ходьбы, и затем послать эти импульсы в двигательные центры спинного мозга, из которых идут нейроны к мышцам сгибателям и разгибателям конечностей. Началась работа по воплощению этого фантастического плана в жизнь. Сначала были опыты с крысами. Они помогли понять, какие задействованы каскады обратных связей между моторными областями коры и движениями конечностей. Ученые даже создали терапевтический тренажер, ускоряющий восстановление двигательной активности у крыс (см.: R. van den Brand et al., 2012. Restoring Voluntary Control of Locomotion after Paralyzing Spinal Cord Injury). Но крысы — это всё же не человек, у них и мозг, и движения устроены совсем иначе. Так что ученые решились начать работать с приматами, выбрав макак-резусов для своих исследований.

Они тщательно изучили динамику импульсов отдельных нейронов при движении конечностей и сняли временную развертку возбуждения нейронов в моторной коре у обезьян. Затем из общей картины возбуждений вычленили те, которые связаны с двигательной активностью. Звучит просто, но технически это очень непростая задача — нужно из миллионов возбуждений выбрать те, которые синхронны с конкретными движениями конечности в каждый момент времени. Так или иначе, был получен образ «команды сверху» с формированием двигательного импульса в коре — своего рода идея ходьбы, закодированная в нервных импульсах, «нейронное» намерение движения. Эта «команда сверху» должна быть воспринята «исполнительным комитетом» — нейронами спинного мозга, которые реализуют идею ходьбы в движение мышц. В результате нейробиологам удалось весьма точно очертить группы спинномозговых нервов, которые воспринимают конкретные импульсы из головного мозга и передают их мышцам (сгибателям и разгибателям).

Итак, места для передатчиков и приемников импульсов найдены, определены их функциональные соответствия. Теперь нужно было создать эти устройства — передатчик и приемник. Оба должны быть миниатюрны и не иметь никаких проводов. Также ко всему этому требовалось разработать алгоритм, который считанные с моторной области возбуждения сможет обработать и, выделив нужные импульсы, передать их на приемник. Ясно, что скорость обработки имеет значение — между идеей и воплощением не может быть большой задержки, ведь скорость мысли весьма велика — около 30 м/сек. Следовательно, обработка информации тоже должна соответствовать этому скоростному масштабу, а это представляет еще одну серьезную техническую проблему. С ней разработчики тоже справились.

В результате ученые создали микрочип, считывающий картину возбуждения моторной коры, и транслятор, передающий эти данные на компьютер. Там эти данные обрабатываются и на выходе выдается импульс движения. Этот импульс отправляется на приемник с несколькими выходами, их число соответствует числу групп двигательных нейронов, передающих импульсы мышцам.

Комплексный нейропротез, восстанавливающий функцию ходьбы у макаки-резуса

Комплексный нейропротез, восстанавливающий функцию ходьбы у макаки-резуса. Он состоит из микрочипа c 96-канальным входом и транслятора. Прямоугольник со штрихами (1) — это картина возбуждений в моторной коре. Эти данные обрабатываются с помощью специального алгоритма (2), вычленяющего импульсы, задающие движение конечности. Эти импульсы передаются на пульсовый генератор (3), связанный со стимулятором (4), который крепится на один из позвонков поясничного отдела спинного мозга ниже места разрыва. От стимулятора отходят 16 точечных выходов к спинному мозгу. Рисунок из обсуждаемой статьи в Nature. К статье также прилагается видео, демонстрирующее ходьбу оперированных обезьян

Затем за дело взялись хирурги. В мозг макакам, с частично перерезанным спинным мозгом и парализованной конечностью вживили микрочип, соединенный с транслятором. В поясничный отдел вживили приемник с 16 выходами.

И вот, когда закончился недельный период адаптации после операции, можно было посмотреть, как вся эта система работает. Передатчик и приемник выключены — лапа у макаки приволакивается, она явно парализована. Передатчик и приемник включены — лапа двигается, как ни в чем не бывало! Обезьяна идет на всех четырех лапах. У нее в голове возникает намерение произвести движение, это намерение — то есть нейронные возбуждения — немедленно передаются в нужное место спинного мозга, и движение производится. Обезьяна начинает движение без всякой тренировки, спонтанно, движением управляет ее собственный мозг. Ученые выполнили свой фантастический замысел!

Источник: Marco Capogrosso, Tomislav Milekovic, David Borton, Fabien Wagner, Eduardo Martin Moraud, Jean-Baptiste Mignardot, Nicolas Buse, Jerome Gandar, Quentin Barraud, David Xing, Elodie Rey, Simone Duis, Yang Jianzhong, Wai Kin D. Ko, Qin Li, Peter Detemple, Tim Denison, Silvestro Micera, Erwan Bezard, Jocelyne Bloch, Gr?goire Courtine. A brain–spine interface alleviating gait deficits after spinal cord injury in primates // Nature. Published online 09 November 2016. DOI: 10.1038/nature20118.

Елена Наймарк

(33)


Источник: elementy.ru

Комментарии: