Искусственный интеллект в поиске. Как Яндекс научился применять нейронные сети, чтобы искать по смыслу, а не по словам |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2016-11-03 09:07 искусственный интеллект, новости нейронных сетей, реализация нейронной сети, поисковые системы Сегодня мы анонсировали новый поисковый алгоритм «Палех». Он включает в себя все те улучшения, над которыми мы работали последнее время. Искусственный интеллект или машинное обучение? Почти все знают, что современные поисковые системы работают с помощью машинного обучения. Почему об использовании нейронных сетей для его задач надо говорить отдельно? И почему только сейчас, ведь хайп вокруг этой темы не стихает уже несколько лет? Попробую рассказать об истории вопроса. Эпоха наивного поиска Сначала был просто поиск слов - инвертированный индекс. Потом страниц стало слишком много, их стало нужно ранжировать. Начали учитываться разные усложнения - частота слов, tf-idf. Эпоха ссылок Потом страниц стало слишком много на любую тему, произошёл важный прорыв - начали учитывать ссылки, появился PageRank. Эпоха машинного обучения Интернет стал коммерчески важным, и появилось много жуликов, пытающихся обмануть простые алгоритмы, существовавшие в то время. Произошёл второй важный прорыв - поисковики начали использовать свои знания о поведении пользователей, чтобы понимать, какие страницы хорошие, а какие - нет. Эпоха искусственного интеллекта И тут время рассказать о последнем прорыве: несколько лет назад компьютеры становятся достаточно быстрыми, а данных становится достаточно много, чтобы использовать нейронные сети. Основанные на них технологии ещё называют машинным интеллектом или искусственным интеллектом - потому что нейронные сети построены по образу нейронов в нашем мозге и пытаются эмулировать работу некоторых его частей. Легко сказать Строго говоря, искусственные нейросети - это один из методов машинного обучения. Совсем недавно им была посвящена лекция в рамках Малого ШАДа. Нейронные сети показывают впечатляющие результаты в области анализа естественной информации - звука и образов. Это происходит уже несколько лет. Но почему их до сих пор не так активно применяли в поиске? Дьявол в технологиях Сформулируем задачу следующим образом. У нас на входе есть запрос пользователя и заголовок страницы. Нужно понять, насколько они соответствует друг другу по смыслу. Для этого необходимо представить текст запроса и текст заголовка в виде таких векторов, скалярное умножение которых было бы тем больше, чем релевантнее запросу документ с данным заголовком. Иначе говоря, мы хотим обучить нейронную сеть таким образом, чтобы для близких по смыслу текстов она генерировала похожие векторы, а для семантически несвязанных запросов и заголовков вектора должны различаться. DSSM В 2013 году исследователи из Microsoft Research описали свой подход, который получил название Deep Structured Semantic Model. Теория и практика Характерное свойство алгоритмов, описываемых в научной литературе, состоит в том, что они не всегда работают «из коробки». Дело в том, что «академический» исследователь и исследователь из индустрии находятся в существенно разных условиях. В качестве отправной точки (baseline), с которой автор научной публикации сравнивает своё решение, должен выступать какой-то общеизвестный алгоритм - так обеспечивается воспроизводимость результатов. Исследователи берут результаты ранее опубликованного подхода, и показывают, как их можно превзойти. Например, авторы оригинального DSSM сравнивают свою модель по метрике NDCG с алгоритмами BM25 и LSA. В случае же с прикладным исследователем, который занимается качеством поиска в реальной поисковой машине, отправной точкой служит не один конкретный алгоритм, а всё ранжирование в целом. Цель разработчика Яндекса состоит не в том, чтобы обогнать BM25, а в том, чтобы добиться улучшения на фоне всего множества ранее внедренных факторов и моделей. Таким образом, baseline для исследователя в Яндексе чрезвычайно высок, и многие алгоритмы, обладающие научной новизной и показывающие хорошие результаты при «академическом» подходе, оказываются бесполезны на практике, поскольку не позволяют реально улучшить качество поиска. Большой входной слой В оригинальной модели DSSM входной слой представляет собой множество буквенных триграмм. Его размер равен 30 000. У подхода на основе триграмм есть несколько преимуществ. Во-первых, их относительно мало, поэтому работа с ними не требует больших ресурсов. Во-вторых, их применение упрощает выявление опечаток и ошибок в словах. Однако, наши эксперименты показали, что представление текстов в виде «мешка» триграмм заметно снижает выразительную силу сети. Поэтому мы радикально увеличили размер входного слоя, включив в него, помимо буквенных триграмм, ещё около 2 миллионов слов и словосочетаний. Таким образом, мы представляем тексты запроса и заголовка в виде совместного «мешка» слов, словесных биграмм и буквенных триграмм. Тяжело в обучении: как нейронная сеть боролась сама с собой и научилась на своих ошибках Обучение исходного DSSM состоит в демонстрации сети большого количества положительных и отрицательных примеров. Эти примеры берутся из поисковой выдачи (судя по всему, для этого использовался поисковик Bing). Положительными примерами служат заголовки кликнутых документов выдачи, отрицательными - заголовки документов, по которым не было клика. У этого подхода есть определённые недостатки. Дело в том, что отсутствие клика далеко не всегда свидетельствует о том, что документ нерелевантен. Справедливо и обратное утверждение - наличие клика не гарантирует релевантности документа. По сути, обучаясь описанным в исходной статье образом, мы стремимся предсказывать аттрактивность заголовков при условии того, что они будут присутствовать в выдаче. Это, конечно, тоже неплохо, но имеет достаточно косвенное отношение к нашей главной цели - научиться понимать семантическую близость. Первая попытка Сначала в качестве отрицательного примера просто возьмём заголовок случайного документа. Например, для запроса [палехская роспись] случайным заголовком может быть «Правила дорожного движения 2016 РФ». Разумеется, полностью исключить то, что случайно выбранный из миллиардов документ будет релевантен запросу, нельзя, но вероятность этого настолько мала, что ей можно пренебречь. Таким образом мы можем очень легко получать большое количество отрицательных примеров. Казалось бы, теперь мы можем научить нашу сеть именно тому, чему хочется - отличать хорошие документы, которые интересуют пользователей, от документов, не имеющих к запросу никакого отношения. К сожалению, обученная на таких примерах модель оказалась довольно слабой. Нейронная сеть - штука умная, и всегда найдет способ упростить себе работу. В данном случае, она просто начала выискивать одинаковые слова в запросах и заголовках: есть - хорошая пара, нет - плохая. Но это мы и сами умеем делать. Для нас важно, чтобы сеть научилась различать неочевидные закономерности. Ещё одна попытка Следующий эксперимент состоял в том, чтобы добавлять в заголовки отрицательных примеров слова из запроса. Например, для запроса [палехская роспись] случайный заголовок выглядел как [Правила дорожного движения 2016 РФ роспись]. Нейронной сети пришлось чуть сложнее, но, тем не менее, она довольно быстро научилась хорошо отличать естественные пары от составленных вручную. Стало понятно, что такими методами мы успеха не добьемся. Успех Многие очевидные решения становятся очевидны только после их обнаружения. Так получилось и на этот раз: спустя некоторое время обнаружилось, что лучший способ генерации отрицательных примеров - это заставить сеть «воевать» против самой себя, учиться на собственных ошибках. Среди сотен случайных заголовков мы выбирали такой, который текущая нейросеть считала наилучшим. Но, так как этот заголовок всё равно случайный, с высокой вероятностью он не соответствует запросу. И именно такие заголовки мы стали использовать в качестве отрицательных примеров. Другими словами, можно показать сети лучшие из случайных заголовков, обучить её, найти новые лучшие случайные заголовки, снова показать сети и так далее. Раз за разом повторяя данную процедуру, мы видели, как заметно улучшается качество модели, и всё чаще лучшие из случайных пар становились похожи на настоящие положительные примеры. Проблема была решена. Разные цели В качестве положительных примеров исследователи из Microsoft Research использовались клики по документам. Однако, как уже было сказано, это достаточно ненадежный сигнал о смысловом соответствии заголовка запросу. В конце концов, наша задача состоит не в том, чтобы поднять в поисковой выдаче самые посещаемые сайты, а в том, чтобы найти действительно полезную информацию. Поэтому мы пробовали в качестве цели обучения использовать другие характеристики поведения пользователя. Например, одна из моделей предсказывала, останется ли пользователь на сайте или уйдет. Другая - насколько долго он задержится на сайте. Как оказалось, можно заметно улучшить результаты, если оптимизировать такую целевую метрику, которая свидетельствует о том, что пользователь нашёл то, что ему было нужно. Профит Ок, что это нам дает на практике? Давайте сравним поведение нашей нейронной модели и простого текстового фактора, основанного на соответствии слов запроса и текста - BM25. Он пришёл к нам из тех времён, когда ранжирование было простым, и сейчас его удобно использовать за базовый уровень.
Как видим, нейронная модель оказалась способна высоко оценить заголовок с правильным ответом, несмотря на полное отсутствие общих слов с запросом. Более того, хорошо видно, что заголовки, не отвечающие на запрос, но всё же связанные с ним по смыслу, получают достаточно высокое значение фактора. Как будто наша модель «прочитала» рассказ Брэдбери и «знает», что это именно о нём идёт речь в запросе! А что дальше? Мы находимся в самом начале большого и очень интересного пути. Судя по всему, нейронные сети имеют отличный потенциал для улучшения ранжирования. Уже понятны основные направления, которые нуждаются в активном развитии. Источник: habrahabr.ru Комментарии: |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||