теперь еще и переводы |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2016-10-09 23:48 Известная максима Марка Андриссена гласит: "ПО пожирает мир" (т.е. программное обеспечение подминает под себя и заменяет собой все больше физических видов деятельности в "реальном мире"). А в последние несколько лет у нас складывается порядок, при котором глубокое обучение пожирает ПО. По транзитивности выходит, что глубокое обучение пожирает мир. И эта статья - еще один пример этого победоносного шествия глубокого обучения (многослойных нейронных сетей). Есть какая-то область с устоявшимися методами, алгоритмами, эвристиками, и тут приходят нейронные сети и одним махом перепрыгивают лучшие результаты до сих пор. На этот раз пришел черед машинного перевода. У меня несколько смешанные чувства от таких новостей. Модели, которые строят нейронные сети, фундаментально намного более непроницаемы, чем методы, которые они заменяют - даже в такой области, как машинный перевод, где лучшие до сих пор подходы уже были статистическими и основанными на тренировке языковых моделей. Есть методы визуализации того, что учат разные слои сети, но они, когда работают, дают только очень приблизительное понимание. Если нейронные сети - это локальный тупик, т.е. есть какой-то максимум, которого они достигнут, но дальше этим путем не пройти, то на дороге к этому максимуму мы не получим полезной информации, которая может помочь в других подходах; мы получим только множество отлично работающих нейронных сетей, у каждой своя архитектура и ухищрения настройки, которые не складываются в общую теорию. Так мне кажется, по крайней мере, из моего дилетантского кресла. Но очень круто, конечно. Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation Источник: avva.livejournal.com Комментарии: |
|