Физики научились многомерным вычислениям от противного |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2016-10-14 16:26 Британские ученые разработали метод Монте-Карло на основе оценочной функции Беннета для многих состояний и использовали его для решения задачи в 93-мерном пространстве. Результаты работы представлены в Physical Review E. Метод Монте-Карло представляет собой группу численных методов для решения задач с множеством случайных переменных. В качестве такой задачи может выступать динамическая модель разрушения экосистемы, например обезлесения, или прогнозирование нагрузки на электросети в зависимости от уровней потребления. Кроме того, метод Монте-Карло используется для оценки вероятности возникновения жизни вне Земли. Главным ограничением таких методов является проклятие размерности, которое применяется в отношении многомерных пространств. Иллюстрацией феномена может служить емкость со 100 рисовыми зернами. Перемешивание зерен оставит неизменным их число, но может повлиять на свойства и как минимум пространственные отношения. Прогноз взаимовлияния таких переменных актуален для машинного обучения, нейросетей и других направлений. Для преодоления проклятия размерности используется полный перебор. В случае с рисом он означал бы многократное перемешивание зерен с фиксацией результатов и их вероятностным прогнозированием. Другой способ предполагает рекуррентное измерение средних расстояний между элементами энергетического ландшафта - диапазона возможных состояний, - в котором есть некие бассейны притяжения, то есть множества траекторий, к которым притягиваются другие траектории. В новой работе ученые использовали с этой целью оценочную функцию Беннета для многих состояний (Multistate Bennett acceptance ratio, MBAR), которая широко применяется в биомолекулярном моделировании. На первом этапе они также описывали энергетический ландшафт модели, но вместо оценки среднего объема разных бассейнов притяжения алгоритм систематически оценивал наименее вероятные и далекие пределы одного бассейна. Метод тестировался на модифицированной задаче о плотной упаковке - известной задаче комбинаторной геометрии. Ученые смоделировали гипотетическую 93-мерную систему из 32 мягких сфер, которые могут быть упакованы различными способами, и нашли наиболее оптимальный из них. Отмечается, что вероятность случайного обнаружения такого способа в рамках задачи составляла 1 на 10 дуотригинтиллионов, или 1 на 1099. «Этот алгоритм достигает тех значений, которые недоступны методу "грубой силы". Если бы вы применили его, то никогда бы не закончили», - сообщил соавтор работы Стефано Мартиниани (Stefano Martiniani). Он добавил, что новый метод расширяет репертуар инструментов для решения задач в многомерном пространстве. Основной трудностью, по словам ученого, остаются ограниченные вычислительные мощности, необходимые для моделирования энергетических ландшафтов. Источник: naked-science.ru Комментарии: |
|