Магниточувствительные бактерии доставили лекарство в опухоль |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2016-09-10 15:30 Магниточувствительные бактерии доставили лекарство в опухоль Канадские ученые разработали метод доставки лекарств в труднодоступные участки опухолей с помощью бактерий, чувствительных к магнитному полю и уровню кислорода. Результаты работы опубликованы в журнале Nature Nanotechnology. Быстрорастущие злокачественные новообразования активно поглощаю кислород, из-за чего некоторые их области испытывают кислородное голодание (так называемые гипоксические участки). Существующие наносистемы прицельной доставки лекарств, включающие липосомы, мицеллы и полимерные наночастицы, переносимые кровотоком, не могут создать достаточной концентрации препарата в этих участках. Сотрудники Монреальской политехнической школы, Университетов Макгилла и Монреаля решили использовать для этих целей штамм МС-1 бактерии Magnetococcus marinus. Ее клетки содержат органеллы, чувствительные к магнитному полю, — магнетосомы, которые представляют собой кристаллы магнитного оксида железа, заключенные в липидную мембрану. Кроме того, эти микроорганизмы чувствительны к концентрации кислорода в окружающей среде и способны к активному передвижению. В естественных условиях они передвигаются вдоль линий магнитного поля Земли, пока не находят зону с пониженным содержанием кислорода. При нахождении подобной зоны они мигрируют туда, где концентрация кислорода минимальна, — такие условия существования для них предпочтительны. Ученые ввели МС-1 иммунодефицитным мышам с карциномой толстой кишки из имплантированных человеческих клеток. После этого животных поместили в магнитное поле, сосредоточенное на опухоли, и убедились, что бактерии прицельно накапливаются в ее гипоксических участках (в отличие от полимерных микросфер, использованных для контроля). На втором этапе эксперимента исследователи нагрузили МС-1 ковалентно связанными липосомами с противоопухолевым препаратом SN-38. После введения этих бактерий (МС-1-LP) мышам в область опухоли липосомы распределились по всему ее объему, преимущественно в участках гипоксии и некроза. Уровень их прицельного накопления в новообразовании превысил 50 процентов. При этом введение более 100 миллионов бактерий не вызывало выброса цитокинов (свидетельства воспалительной реакции) и не вредило клеткам крови животных. Таким образом, разработанная методика способна прицельно доставлять лекарства в труднодоступные участки опухолей эффективнее искусственных наносистем, значительно снижая токсические эффекты препаратов на остальные органы и ткани. При этом ее экспериментальное применение у животных не имело выраженных побочных эффектов. Как отмечают исследователи, в перспективе эффективность МС-1 можно дополнительно повысить путем генетической модификации бактерий и совершенствования алгоритмов их магнитного наведения. Как уже упоминалось, для прицельной доставки лекарств в экспериментах используют липосомы, мицеллы, полимерные микросферы и другие наноконструкции. Все они обладают недостатками, ограничивающими их применение. Различные научные коллективы мира постоянно занимаются их совершенствованием. Так, например, ученые из Беркли научили наномицеллы проникать в головной мозг, исследователи из Барселоны предложили транспортировать лекарства на микроскопических магнитных «коврах», а американская группа ученых замаскировала полимерные наночастицы от иммунной системы, покрыв их мембраной тромбоцитов. Также предпринимались попытки применения биологических объектов, как и в описываемой канадской работе: международный научный коллектив использовал для этих целей модифицированные диатомовые водоросли. Комментарии: |
|