![]() |
![]() |
![]() |
![]() |
Изучаем нейронные сети за четыре шага |
|
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2016-08-08 21:31 ![]() В этот раз я решил изучить нейронные сети. Базовые навыки в этом вопросе я смог получить за лето и осень 2015 года. Под базовыми навыками я имею в виду, что могу сам создать простую нейронную сеть с нуля. Примеры можете найти в моих репозиториях на GitHub. В этой статье я дам несколько разъяснений и поделюсь ресурсами, которые могут пригодиться вам для изучения. Шаг 1. Нейроны и метод прямого распространения Так что же такое «нейронная сеть»? Давайте подождём с этим и сперва разберёмся с одним нейроном. Нейрон похож на функцию: он принимает на вход несколько значений и возвращает одно. Круг ниже обозначает искусственный нейрон. Он получает 5 и возвращает 1. Ввод - это сумма трёх соединённых с нейроном синапсов (три стрелки слева).
В левой части картинки мы видим 2 входных значения (зелёного цвета) и смещение (выделено коричневым цветом). Входные данные могут быть численными представлениями двух разных свойств. Например, при создании спам-фильтра они могли бы означать наличие более чем одного слова, написанного ЗАГЛАВНЫМИ БУКВАМИ, и наличие слова «виагра». Входные значения умножаются на свои так называемые «веса», 7 и 3 (выделено синим). Теперь мы складываем полученные значения со смещением и получаем число, в нашем случае 5 (выделено красным). Это - ввод нашего искусственного нейрона.
Потом нейрон производит какое-то вычисление и выдает выходное значение. Мы получили 1, т.к. округлённое значение сигмоиды в точке 5 равно 1 (более подробно об этой функции поговорим позже). Если бы это был спам-фильтр, факт вывода 1 означал бы то, что текст был помечен нейроном как спам. Иллюстрация нейронной сети с Википедии. Если вы объедините эти нейроны, то получите прямо распространяющуюся нейронную сеть - процесс идёт от ввода к выводу, через нейроны, соединённые синапсами, как на картинке слева. Я очень рекомендую посмотреть серию видео от Welch Labs для улучшения понимания процесса. Шаг 2. Сигмоида После того, как вы посмотрели уроки от Welch Labs, хорошей идеей было бы ознакомиться с четвертой неделей курса по машинному обучению от Coursera, посвящённой нейронным сетям - она поможет разобраться в принципах их работы. Курс сильно углубляется в математику и основан на Octave, а я предпочитаю Python. Из-за этого я пропустил упражнения и почерпнул все необходимые знания из видео.
Сигмоида просто-напросто отображает ваше значение (по горизонтальной оси) на отрезок от 0 до 1. Первоочередной задачей для меня стало изучение сигмоиды, так как она фигурировала во многих аспектах нейронных сетей. Что-то о ней я уже знал из третьей недели вышеупомянутого курса, поэтому я пересмотрел видео оттуда. Но на одних видео далеко не уедешь. Для полного понимания я решил закодить её самостоятельно. Поэтому я начал писать реализацию алгоритма логистической регрессии (который использует сигмоиду). Это заняло целый день, и вряд ли результат получился удовлетворительным. Но это неважно, ведь я разобрался, как всё работает. Код можно увидеть здесь. Вам необязательно делать это самим, поскольку тут требуются специальные знания - главное, чтобы вы поняли, как устроена сигмоида. Шаг 3. Метод обратного распространения ошибки Понять принцип работы нейронной сети от ввода до вывода не так уж и сложно. Гораздо сложнее понять, как нейронная сеть обучается на наборах данных. Использованный мной принцип называется методом обратного распространения ошибки. Вкратце: вы оцениваете, насколько сеть ошиблась, и изменяете вес входных значений (синие числа на первой картинке). Процесс идёт от конца к началу, так как мы начинаем с конца сети (смотрим, насколько отклоняется от истины догадка сети) и двигаемся назад, изменяя по пути веса, пока не дойдём до ввода. Для вычисления всего этого вручную потребуются знания матанализа. Khan Academy предоставляет хорошие курсы по матанализу, но я изучал его в университете. Также можно не заморачиваться и воспользоваться библиотеками, которые посчитают весь матан за вас. Скриншот из руководства Мэтта Мазура по методу обратного распространения ошибки. Вот три источника, которые помогли мне разобраться в этом методе:
В процессе прочтения первых двух статей вам обязательно нужно кодить самим, это поможет вам в дальнейшем. Да и вообще, в нейронных сетях нельзя как следует разобраться, если пренебречь практикой. Третья статья тоже классная, но это скорее энциклопедия, поскольку она размером с целую книгу. Она содержит подробные объяснения всех важных принципов работы нейронных сетей. Эти статьи также помогут вам изучить такие понятия, как функция стоимости и градиентный спуск. Шаг 4. Создание своей нейронной сети При прочтении различных статей и руководств вы так или иначе будете писать маленькие нейронные сети. Рекомендую именно так и делать, поскольку это - очень эффективный метод обучения. Ещё одной полезной статьёй оказалась A Neural Network in 11 lines of Python от IAmTrask. В ней содержится удивительное количество знаний, сжатых до 11 строк кода. Скриншот руководства от IAmTrask После прочтения этой статьи вам следует написать реализацию всех примеров самостоятельно. Это поможет вам закрыть дыры в знаниях, а когда у вас получится, вы почувствуете, будто обрели суперсилу. Поскольку в примерах частенько встречаются реализации, использующие векторные вычисления, я рекомендую пройти курс по линейной алгебре от Coursera. После этого можно ознакомиться с руководством Wild ML от Denny Britz, в котором разбираются нейронные сети посложнее. Скриншот из руководства WildML Теперь вы можете попробовать написать свою собственную нейронную сеть или поэкспериментировать с уже написанными. Очень забавно найти интересующий вас набор данных и проверить различные предположения при помощи ваших сетей. Для поиска хороших наборов данных можете посетить мой сайт Datasets.co и выбрать там подходящий. Так или иначе, теперь вам лучше начать свои эксперименты, чем слушать мои советы. Лично я сейчас изучаю Python-библиотеки для программирования нейронных сетей, такие как Theano, Lasagne и nolearn. Удачи! Источник: tproger.ru Комментарии: |
|