Ученые добились возникновения квантовой запутанности при комнатной температуре |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2016-05-15 18:23 Ученые добились возникновения квантовой запутанности при комнатной температуре Квантовая запутанность - это загадочное явление квантового мира, благодаря которому запутанные частицы остаются неразрывно связанными друг с другом, несмотря на разделяющее их расстояние, которое может быть сколь угодно большим. Отметим, что практически все эксперименты с физическими частицами, в которых задействовано явление квантовой запутанности, производятся при невероятно низких температурах, приближающихся к температуре абсолютного нуля. Однако, группа ученых-физиков из Чикагского университета показала, что это явление может возникнуть и при нормальной температуре окружающей среды, и это является огромным шагом для дальнейшего развития таких областей, как квантовые вычисления и квантовые коммуникации. В своих экспериментах ученые использовали подложку из карбида кремния. Воздействие импульса инфракрасного лазерного света, сосредоточенного на поверхности материала, привело к тому, что в 40 кубических микрометрах этого полупроводникового материала магнитные состояния всех электронов выровнялись в одном направлении. Последующий за лазерным магнитный импульс запутал на квантовом уровне все электроны, магнитный момент которых не успел измениться за короткое время, прошедшее между двумя импульсами. И такой метод получения запутанных частиц отлично сработал, сработал, невзирая на то, что полупроводниковый материал находился в нормальных условиях, а не был охлажден до температуры ниже -270 градусов Цельсия, как в большинстве других экспериментов. "Своими экспериментами мы продемонстрировали возможность создания стабильных запутанных частиц в среде чистого полупроводникового материала. И без сомнений то, что все это было сделано при комнатной температуре, окажет огромное влияние на дальнейшее развитие квантовой вычислительной и коммуникационной техники" - рассказывает Дэвид Ошалом (David Awschalom), ученый, возглавляющий исследовательскую группу, - "В скором будущем квантовые устройства перестанут нуждаться в сложных системах низкотемпературного охлаждения. Это сделает квантовую технику дешевле и доступней более широкому кругу потребителей". Исследователи считают, что обнаруженный ими эффект "высокотемпературной" квантовой запутанности не сразу пробьет себе путь в область квантовых вычислений. Его реализация более подходит сейчас для создания различных датчиков, работа которых основана на принципах квантовой механики и которые могут найти широкое применение в биологии, медицине и других смежных областях. А в более отдаленном будущем ученые надеются получить эффект квантовой запутанности при нормальных условиях в других материалах и с другими частицами, которые более походят для их использования в качестве квантовых битов, кубитов, вычислительных систем. Комментарии: |
|