Исследование приблизит оптические квантовые вычисления к реальности |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2016-03-31 17:07 Один из перспективных путей создания масштабируемого квантового компьютера основан на применении полностью оптической архитектуры, в которой кубита представлены фотонами, а управление ими осуществляется зеркалами и расщепителями лучей. До сих пор исследователям удавалось продемонстрировать такой подход - Linear Optical Quantum Computing - только для самых элементарных структур из нескольких фотонов. В новой работе, представленной в журнале Nano Letters, авторы из Делфтского технологического университета (Нидерланды) предложили способ полной интеграции источников одиночных фотонов в оптические цепи, для создания интегральных квантовых схем, поддерживающих масштабируемые оптические квантовые вычисления. Главной проблемой при этом была интеграция нескольких компонентов, обычно несовместимых друг с другом: однофотонных источников (квантовые точки); устройств маршрутизации (волноводы); средств манипулирования фотонами (оптические полости, фильтры и квантовые вентили); детекторов индивидуальных фотонов. Авторы экспериментально продемонстрировали метод, позволяющий внедрять квантовые точки в нанопровода, а те, в свою очередь, заключать в волновод. Требуемую точность при таких операциях обеспечило использование наноманипулятора - вольфрамового острия, служащего для перемещения и выравнивания компонентов. Внутри волновода одиночные фотоны могут избирательно направляться в разные части оптической схемы для выполнения логических операций. Этот гибридный метод, в отличие от предлагавшихся прежде, является полностью детерминистическим, то есть он интегрирует в фотонные схемы только квантовые источники с нужными свойствами. Достигнутая эффективность соединения источника с фотонным каналом составляет около 24%. Это считается на сегодняшний день неплохим результатом, но авторы планируют в дальнейшем улучшить его до 92% путём оптимизации конструкции волновода и подбора материалов. Они также рассчитывают продемонстрировать на базе такого чипа квантовое перепутывание, и увеличить сложность фотонных схем и детекторов.
Источник: ko.com.ua Комментарии: |
|