Ин бриф: статья о том, как помочь развитию искусственного интеллекта с помощью машинного обучения... |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2016-03-18 10:38 Artificial intelligence has never been as pervasive as it is today. From GoogleБІ-s self-driving cars from to HiltonБІ-s new Watson-powered hotel concierge, we are witnessing an explosion of AI capabilities. But while it may appear that machines are taking over, they are still tied to their human masters for one very important task: training. БІ WeБІ-re in the middle of the БІHBig BangБІ- moment of AI,БІ« NVIDIAБІHs Senior Product Manager Will Ramey says in the AISummitБІ-s new ebook on the topic. БІ We now have the deep neural networks, the explosion of big data, and now thanks to the leap in processing power with enhanced GPUs, we have the full package to see a real shift in the development of commercial real-world AI applications.БІ« NVIDIA is at the center of this AI renaissance with its powerful GPUs and software tools used to harness the processors for big data and high performance computing (GPU) workloads. No fewer than 170 of the companyБІ-s GPUs powered AlphaGo, a Google (NASDAQ: GOOG) Research program designed to play the ancient Chinese board game called Go. While IBMБІHs (NYSE: IBM) AI technology famously triumphed over the chess master Gary Kasparov, no computer had ever beaten a Go expert, until GoogleБІ-s DeepMind system beat Fan Hui earlier this year. The algorithms are playing ever-bigger roles in nearly every part of our lives, from politics and sports to medicine and finance. The combination of big data collection and AI-powered computation is truly ushering in a new age of human-computer interaction. Every day, computers are getting better at anticipating our needs, recommending solutions, and handling rote tasks. As machine surpass human achievement, it leads to inevitable questions about what jobs humans will do in a world in which machines do more and more of the work. Harvard Business ReviewБІ-s Thomas H. Davenport and Julia Kirby tackle this question in a June 2015 article БІ Beyond Automation.БІ« According to Davenport and Kirby, we are entering the Third Era of Automation, which is marked by greater decision-making on the part of machines. As cognitive systems like IBM Watson increasingly make choices for people in service to them, what role does that leave knowledge workers who previously made those decisions? In contrast to the two previous eras of automation, the academics point out, there is scant БІ high-groundБІ« left for humans to aspire to. But Davenport and Kirby turn that question around. БІ What if, rather than asking the traditional questionБІ-What tasks currently performed by humans will soon be done more cheaply and rapidly by machines?БІ-we ask a new one: What new feats might people achieve if they had better thinking machines to assist them?БІ« they write. БІ Instead of seeing work as a zero-sum game with machines taking an ever greater share, we might see growing possibilities for employment. We could reframe the threat of automation as an opportunity for augmentation.БІ« The Augmented HumanWhether you view it as machine-augmented human cognition, or human-assisted machine cognition, it comes back to one simple fact: artificial intelligence needs people. Meet CONNIE, the new Watson-powered concierge that Hilton is testing Even with the most powerful GPU clusters running the most advanced deep neural networks, the machine learning algorithms that underlie AI capabilities are only as good as the data thatБІ-s used to train them. That old computer science saying БІ garbage in, garbage outБІ« is still valid. БІ A machine learning model or artificial intelligence model is only as good as the training data,БІ« says Matt Bencke, the CEO of Spare5, a Seattle startup that supplies companies like IBM, Pintrest, and Getty Images with human-sourced data used for machine learning models. БІ For the training data to be good, you need high quality with specificity of whoБІ-s providing it, at scale, and without a ton of cost or effort. If you get any one of those parameters wrong, you canБІ-t train the model effectively.БІ« Spare5 is one of a growing number of outfits thatБІ-s delivering crowdsourced human insights for the sole purpose of training machines. Despite the unparalleled computational power that companies are amassing to crunch their big data, machines still lack the capability to make subjective insights the way that people can. In many respects, itБІ-s that same cognitive quality that makes a person a person. Machines arenБІ-t going to replicate that humanness anytime soon, which is why the machines will need people for the foreseeable future. WeБІ-ll be training models this way for the next several decades, at the very least, says Paul Chong, director of IBMБІ-s Watson Group БІ The way weБІ-re training systems today is focused on specific industries and roles,БІ« Chong says in the AISummitБІ-s ebook. БІ It is interesting to consider when, or if ever, a general AI engine may occur. Some academics have suggested it could be 2049, but IБІ-d have to say itБІ-s very difficult to predict when we might reach the idea of a singularity. I feel itБІ-s still a long way off from where we are today.БІ« Domain-SpecificIn the meantime, as academics and AI industry insiders debate the interaction of AI and humans, thereБІ-s no reason for organizations to hold back on their big data and AI initiatives. I think machine learning, artificial intelligence, augmented intelligence, cognitive computingБІ- those are going to become a way for any company with big data to operate in the future,БІ« Spare5БІ-s Bencke tells Datanami. БІ I think everybody knows that. What theyБІ-re learning the hard way and terrified of is, they need domain-specific training data. In simple terms, that says the model is only as good as the humans who train and retrain it. Companies are really struggling with that. Spare5 is working with IBM Watson to advanced big data algorithms used in retail, among other industries. The potential for big data to impact the retail market is substantial, and many retailers are looking to deliver more powerful search and recommendation systems, Bencke says. БІ ItБІ-s one thing for a computer vision system to say thatБІ-s a red dress, but itБІ-s quite another to say thatБІ-s a red dress appropriate for a formal professional setting,БІ« he says. БІ Good luck going to your favorite retailer and typing that in. The retailer has no sense of what IБІ-m thinking about for an outfit for an event, let alone my personal style, the weather where I work, or what the fashion trends are in my geography. Those are all very solvable big data problems, but to solve them you need domain-specific insights.БІ« This example illustrates the gap between how people actually think and how computers are taught to reason. The gap can be narrowed, but thereБІ-s no silver bullet. Outfits like Spare5БІ-which has more than 10,000 users who contribute their knowledge to specific domains like interior design, golf, architecture, and fashionБІ-will be critical to narrowing the gap. БІ ItБІ-s still very much early days in terms of companies applying machine learning at scale,БІ« Bencke says. БІ There are exceptions and itБІ-s moving really fast. But I feel like Spare 5 has really got not just the luck of having a talented team, but good timing. Everywhere I go, people are treating us like the bottle of water in desert.БІ« Источник: www.datanami.com Комментарии: |
|