Обонятельный анализатор

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


2016-04-23 03:30

Головной мозг

Обонятельный анализатор.

Рецепторный отдел обонятельного анализатора расположен в области верхних вкусовых ходов и представлен рецепторными обонятельными клетками. Общее количество обонятельных рецепторов у человека около 10 млн. Рецепторные обонятельные клетки имеют веретенообразную форму. Периферический отросток этих щеток заканчивается утолщением - обонятельной булавой, из которой выступают несколько (6-12) тончайших волосков. Они погружены в жидкую среду, вырабатываемую боуменовыми железами. Полагают, что наличие волосков в десятки раз увеличивает площадь контакта рецепторов с молекулами пахучих веществ. Возможно, что волоски, осуществляя двигательную функцию, увеличивают надежность захвата молекул пахучего вещества и контакта с ними. Считают, что рецепторный потенциал генерируется в булаве.

Молекулы пахучего вещества вступают в контакт со слизистой оболочкой носовых ходов, происходит взаимодействие со специализированными белками, встроенными в мембрану рецептора. В результате этого взаимодействия в рецепторе генерируется рецепторный потенциал, а затем импульсная активность. Возбуждение, передающееся по волокну обонятельного нерва, поступает в обонятельную луковицу (первичный нервный центр обонятельного анализатора).

Выходящий из обонятельной луковицы обонятельный тракт состоит из нескольких пучков, которые направляются в разные отделы переднего мозга: переднее обонятельное ядро, обонятельный бугорок, препериформная кора и часть ядер миндалевидного комплекса. Полагают, что большинство областей проекции обонятельного тракта можно рассматривать как ассоциативные области, которые обеспечивают связь обонятельного анализатора с другими сенсорными системами.

Каждый обонятельный рецептор отвечает на многие пахучие вещества, правда, "отдавая предпочтение" некоторым из них. Возможно эти свойства рецепторов обоняния, различающиеся по своей настройке на разные группы веществ, лежат в основе кодирования раздражителей (запахов) и их опознания в центрах обонятельного анализатора.

Чувствительность обонятельного анализатора оценивается по порогу обоняния. Порогом обонятельной чувствительности называется то наименьшее количество паров пахучего вещества, которое при воздействии на рецепторы, способно вызвать обонятельное ощущение. Определение порогов обонятельной чувствительности проводится с помощью ольфактометрии.

Чувствительность обонятельного анализатора человека очень высока: один обонятельный рецептор может быть возбужден одной молекулой пахучего вещества.

Кожный анализатор.

Кожа, как наружный покров, выполняет следующие функции:

* защитную,

* выделительную,

* обменную,

* сенсорную и др.

У человека выделяют три основных вида кожной чувствительности: тактильную -чувство давления и прикосновения; температурную - тепловую и холодовую и болевую (ноцицептивную).

В коже располагаются различные рецепторные образования. Наиболее простым типом сенсорного рецептора являются свободные нервные окончания. Более сложную организацию имеют морфологически дифференцированные образования, такие как осязательные диски (диски Меркеля), осязательные тельца (тельца Мейснера), пластинчатые тельца (тельца Пачини) - рецепторы давления и вибрации, колбы Краузе, тельца Руффини и др.

Большинству специализированных концевых образований присуща предпочтительная чувствительность к определенным видам раздражений и только свободные нервные окончания являются полимодальными рецепторами.

Тактильная рецепция(механорецептивная чувствительность). Типичные механорецепторы, как правило, представляют собой инкапсулированные образования. Их называют поверхностными концевыми органами, т. к. они в коже расположены поверхностно. Это диски Меркеля, тельца Мейснера, тельца Пачини и др. Тельца Пачини рассматривают как общую модель механорецептора, они являются наиболее распространенными в организме специализированными тканевыми рецепторами и реагируют на быстрые изменения прикосновения - давления. Тельца Пачини напоминают луковицу. Каждое тельце состоит из многослойной наружной капсулы, внутренней колбы и заключенной в ней части афферентного нервного волокна. К каждому тельцу подходит одно афферентное волокно, которое, входя во внутреннюю капсулу, теряет миелиновую оболочку. По ходу терминали имеют место пальцеобразные выступы.

Механический стимул, действуя на тельце Пачини, трансформируется элементами капсулы, после чего эта модифицированная механическая сила деформирует мембрану нервного волокна, которая ( возможно ее пальцевидные выросты) является местом преобразования механической деформации в электрическую энергию рецепторного потенциала. После того как рецепторный потенциал достигает определенного критического значения, в рецепторе начинает генерироваться потенциал действия. Полагают, что местом возникновения потенциала действия в тельцах Пачини является область первого перехвата Ренвье.

Характеризуя тактильную чувствительность, различают пространственную чувствительность, которая характеризуется пространственным порогом, и чувствительность, которая определяется по силовому порогу. Под пространственным порогом тактильной чувствительности понимают то наименьшее расстояние между двумя точками кожи или слизистой оболочки, при .одновременном раздражении которых возникает ощущение двух прикосновений. Он характеризует пространственную различительную способность кожи или слизистой оболочки. Наибольшей различительной способностью обладают: кончик языка, губ, ладонная поверхность пальцев, и др., наименьшей - голень, спина, бедро, плечо. Отличия в пространственном различении связаны главным образом с различными размерами кожных рецепторных полей (от 0,5 кв. мм до 3 кв. см) и со степенью их перекрытия. Пространственный порог определяется методом эстезиометрии.

Температурная чувствительность. Температура человека характеризуется значительным постоянством, поэтому информация о температуре внешней и внутренней среды имеет важное значение для осуществления механизмов терморегуляции.

Терморецепторы располагаются в коже, на роговице глаза, в слизистых оболочках, в ЦНС (гипоталамус). Различают два вида терморецепторов - тепловые и холодовые. Считают, что к температурным воздействиям чувствительны специализированные рецепторные образования тельца Руффини (восприимают тепло), колбы Краузе (воспринимают холод), а также свободные нервные окончания.

На кожной поверхности температурные точки расположены неравномерно и залегают на различной глубине. Холодовые рецепторы расположены более поверхностно (0,17 мм), чем тепловые (0,3 мм). Самое большое количество термочувствительных точек находится на лице, в области губ и век. Тепловых точек примерно в 10 раз меньше, чем холодовых, а на некоторых участках тепловые точки отсутствуют (периферия роговицы и конъюктива глаза).

Большинство терморецепторов имеют локальные рецептивные поля и реагируют на изменение температуры повышением частоты генерируемых импульсов, которое наблюдается в течение всего времени действия стимула.

В определенных условиях холодовые рецепторы могут возбуждаться теплом (свыше 45 "С). Этим объясняется острое ощущение холода при быстром погружении в горячую воду.

В настоящее время считают, что наиболее важным фактором, определяющим активность терморецепторов и формирования в последующем ощущения, является не изменение температуры, а ее абсолютное значение.

Одним из методов измерения температурной чувствительности является термоэстезиометрия. Этот метод заключается в определении плотности расположения тепловых и холодовых рецепторов на разных участках тела. Вторым методом является исследование функциональной мобильности терморецепторов.

БОЛЕВАЯ (НОЦИЦЕПТИВНАЯ) ЧУВСТВИТЕЛЬНОСТЬ.

Болевая чувствительность имеет особое значение в приспособлении организма, т. к. она сигнализирует об опасности при действии повреждающих факторов. Болевое ощущение может возникать либо при воздействии повреждающего фактора на специальные рецепторы - ноцицепторы, либо при действии сверхсильных раздражителей на различные рецепторы.

Рецепторы боли (ноцицепторы) кожи и слизистых оболочек представлены свободными неинкапсулированными нервными окончаниями, которые могут иметь самую разнообразную форму (спиралей, пластинок, волосков и др.).

По механизму возбуждения ноцицепторы делятся на две группы:

* механоноцицепторы;

* хемоноцицепторы.

Механоноцицепторы реагируют на механические повреждения открытием каналов для ионов натрия. Этот тип ноцицепторов реагирует не только на механические повреждения, но и на чрезмерные тепловые и холодовые раздражители.

Хемоноцицепторы реагируют на химические вещества (алгогены), под воздействием которых их субсинаптическая мембрана деполяризируется.

Возбуждение от механоцинорецепторов проводится по А-дельта волокнам со скоростью 5-15 м/с. Эти возбуждения обеспечивают ощущение быстрой, острой, хорошо локализованной боли - эпикритической боли. Возбуждение от хемоноцицепторов проводится по С-волокнам со скоростью 0,5 -3 м/с и формирует ощущение медленной, неприятной, плохо локализованной боли - протопатической боли.

Проведение соматосенсорной чувствительностиосуществляется в основном по двум путям: лемнисковому и спиноталамическому.

Лемнисковый путьобеспечивает передачу в мозг сигналов о прикосновении к коже и давлении на нее. Особенностью этого пути является быстрая передача наиболее тонкой информации, дифференцированной по силе и месту воздействия. Первые нейроны этого пути находятся в сигнальном ганглии. Их аксоны в составе задних столбов доходят до нежного и клиновидного ядер продолговатого мозга мозга, где происходит переключение сигналов на вторые нейроны. Аксоны вторых нейронов образуют медиальный леминисковый тракт и после перекреста направляются в специфические ядра таламуса (вентробазальный комплекс). В этих ядрах расположены третьи нейроны этого пути, их аксоны заканчиваются в клетках первой соматосенсорной области коры.

Спиноталамический путь. Первые нейроны этого пути расположены в спинальном Ганглии. Эти нейроны посылают в мозг медленно проводящие нервные волокна. Вторые нейроны данного пути локализуются в сером веществе спинного мозга, а их аксоны в составе восходящего спиноталамического тракта после перекреста на спинальном уровне направляется в вентрообразный комплекс ядер таламуса, в вентральные неспецифические ядра таламуса, ядро ствола мозга и гипоталамус. В этих ядрах локализуются третьи нейроны спиноталамического пути, аксоны которых заканчиваются в первой и второй соматосенсорной зоне коры.

ВЕСТИБУЛЯРНЫЙ АНАЛИЗАТОР.

Вестибулярная сенсорная система играет большую роль в пространственной ориентировке человека. Она анализирует и передает информацию об ускорениях или замедлениях прямолинейного и вращательного движения, а также при изменении положения головы в пространстве.

Периферическим отделом вестибулярного анализатора является вестибулярный аппарат, который находится в лабиринте пирамиды височной кости, состоящий из преддверия и трех полукружных каналов, расположенных в трех взаимно перпендикулярных плоскостях. В лабиринте находится также улитка, в которой расположены слуховые рецепторы.

Вестибулярный аппарат включает в себя два мешочка, один из которых расположен ближе к улитке, а второй - к полукружным каналам. В мешочках преддверия находится отолитовый аппарат - скопление нервных клеток (вторичночувствующих механорецепторов). Выступающая в полость мешочка часть рецепторной клетки оканчивается одним длинным подвижным волоском и 60 - 80 склеенными неподвижными волосками. Эти волоски пронизывают желеобразную мембрану, содержащую кристаллики карбоната кальция - отолиты. Возбуждение волосковых клеток преддверия происходит вследствие скольжения отолитовой мембраны по волоскам, т. е. их сгибания.

В ампулах полукружных каналов рецепторные волосковые клетки сконцентрированы в виде крист. Они также снабжены волосками. При движении эндолимфы (во время угловых ускорений), когда волоски сгибаются в одну сторону - волосковые клетки возбуждаются, а при противоположно направленном движении - тормозятся. В волосковых клетках преддверия и ампулы при их сгибании генерируется рецепторный потенциал, который через синапсы передает сигналы о раздражении волосковых клеток окончаний волокон вестибулярного нерва.

Волокна вестибулярного нерва (отростки биполярных нейронов) направляются в продолговатый мозг И заканчиваются на нейронах бульбарного вестибулярного комплекса. Отсюда сигналы направляются во многие отделы ЦНС: спинной мозг, мозжечок, глазодвигательные ядра, ретикулярную формацию, кору большого мозга и вегетативные ганглии.

Вестибулоспинальные влияния обеспечивают изменения импульсации нейронов спинного мозга. Таким образом осуществляются динамическое перераспределение тонуса скелетной мускулатуры и рефлекторные реакции, необходимые для сохранения равновесия.

В вестибуловегетативные реакции вовлекаются сердечно-сосудистая система, желудочно-кишечный тракт и другие органы. При сильных и длительных нагрузках на вестибулярный аппарат возникает патологический симптомокомплекс, названый болезнью движения (например, морская болезнь), которая проявляется изменением сердечного ритма (учащение, а затем замедление), сужением, а затем расширением сосудов, усилением движения желудка, головокружением, тошнотой и рвотой. Повышенная склонность к болезни может быть уменьшена специальной тренировкой и лекарственными средствами.

Вестибулоглазодвигательные реакции(глазной нистагм) состоят в медленном ритмическом движении глаз в противоположную вращению сторону, а затем быстрое возвращение в исходное состояние. Само возникновение и характеристика вращательного глазного нистагма являются важными показателями состояния вестибулярной системы и широко используются в авиационной, морской и космической медицине.

Вестибулярный анализатор помогает организму ориентироваться в пространстве при активном движении животного и при пассивном переносе с места на место с завязанными глазами. Лабиринтовый аппарат с помощью корковых отделов анализирует и запоминает направление движения, повороты и пройденное расстояние. Следует отметить, что в нормальных условиях пространственная ориентировка обеспечивается совместной деятельностью зрительной и вестибулярной сенсорных систем.

Чувствительность вестибулярного анализатора здорового человека очень высока: отолитовый аппарат позволяет воспринимать ускорение прямолинейного движения, равное всего 2 см/с2. Рецепторная система полукружных каналов позволяет замечать ускорения вращения в 2-3 градуса в 1 с2

Комментарии: