Энергетический подход к эволюции мозга

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


ЭНЕРГЕТИЧЕСКИЙ ПОДХОД К ЭВОЛЮЦИИ МОЗГА

Нервная система живых существ в процессе эволюции прошла долгий путь от совокупности примитивных рефлексов у простейших до сложной системы анализа и синтеза информации у высших приматов. Что послужило стимулом к формированию и развитию мозга? Статья известного ученого и популяризатора науки Сергея Вячеславовича Савельева, автора книги "Происхождение мозга" (М.: ВЕДИ, 2005), представляет оригинальную теорию адаптивной эволюции нервной системы.

Нервная система требуется далеко не всем живым существам. Она не нужна тем, кто был и будет неподвижен, то есть растениям. Для выживания им не требуется ни быстрой реакции, ни мгновенной перестройки организма. Есть и другая возможность существования без нервной системы - жить в чудесном месте, где много пищи и организм всегда защищен и согрет. Жизнь паразитического червя вполне соответствует этим требованиям. Поэтому он, как растение, не обладает нервной системой. Правда, у растений нервной системы никогда не было, а у солитера она полностью исчезла. И у растений и у солитера функции реагирования на изменение внешних условий выполняет не нервная система, а отдельные клетки, обладающие химической, электромагнитной и механической чувствительностью.

Однако судьба паразитических червей скорее исключение, чем правило в животном мире. Для большинства организмов окружающий мир слишком нестабилен и требует постоянного приспособления к нему. Органом быстрого и целостного реагирования на изменяющиеся внешние условия стала нервная система.

От реакции клетки - к многоклеточному организму

Наиболее древнее свойство нервной системы простейших живых существ - способность распространять информацию о контакте с внешним миром с одной клетки на весь многоклеточный организм. Самое первое преимущество, которое дала такая примитивная нервная система многоклеточным, - это способность реагировать на внешние воздействия так же быстро, как простейшие одноклеточные.

У животных, прикрепленных к конкретному месту, - актиний, асцидий, малоподвижных моллюсков с крупными раковинами, коралловых полипов - несложные задачи: фильтрация воды и захват проплывающей мимо пищи. Поэтому нервная система таких малоподвижных организмов по сравнению с нервной системой активных животных устроена очень просто. Она в основном представляет собой небольшое окологлоточное нервное кольцо с совокупностью примитивных рефлексов. Тем не менее даже эти простые реакции протекают на несколько порядков быстрее, чем у растений такого же размера.

Свободноживущим кишечнополостным требуется более обширная нервная сеть. У них нервная система распределена почти равномерно по всему телу или по большей его части (исключение составляют скопления нервных клеток у подошвы и в области окологлоточного кольца), что обеспечивает быструю согласованную реакцию всего организма на раздражители. Равномерно распределенную нервную систему обычно называют диффузной. На различные воздействия организм таких живых существ откликается быстро, но неспецифически, то есть однотипно. Например, пресноводная гидра при любых информационных сигналах - если качнуть лист, на котором она сидит, прикоснуться к ней щетинкой или вызвать движение воды - реагирует одинаковым образом - сжимается.

Появление органов чувств

Следующим этапом в эволюции нервной системы стало появление нового качества - упреждающей адаптации. Это означает, что организм успевает подготовиться к изменению окружающей среды заранее, до непосредственного контакта с раздражителем. Для этого природа создала огромное разнообразие органов чувств, в основе работы которых лежат три механизма: химическая, физическая и электромагнитная чувствительность мембраны нервной клетки. Химическая чувствительность может быть представлена обонянием и контактным органом вкуса, осморецептором и рецептором парциального давления кислорода. Механочувствительность реализуется в виде слуха, органов боковой линии, грави- и терморецепторов. Чувствительность к электромагнитным волнам обусловлена наличием рецепторов внешних или собственных полей, светочувствительностью либо способностью воспринимать магнитные поля планеты и Солнца.

Три типа чувствительности в процессе эволюции выделились в специализированные органы, что неизбежно привело к повышению направленной чувствительности организма. Рецепторы сенсорных органов приобрели возможность воспринимать различные воздействия на расстоянии. В процессе эволюции органы чувств возникли у нематод, свободноживущих плоских и круглых червей, кишечнополостных, иглокожих и многих других примитивных живых существ. Такая организация нервной системы в стабильной среде вполне оправдывает себя. Животное недорогой ценой приобретает высокие адаптивные возможности. До тех пор, пока нет внешнего стимула, нервная система "молчит" и не требует особых расходов на свое содержание. Как только ситуация меняется, она воспринимает это органами чувств и отвечает направленной активностью эффекторных органов.

Однако с появлением упреждающей адаптации у живых существ возникли проблемы.

Во-первых, одни сигналы идут от фоторецепторов, другие - от хеморецепторов, а третьи - от рецепторов электромагнитного излучения. Как сравнить столь разнородную информацию? Сопоставить сигналы можно только при их однотипной кодировке. Универсальным кодом, позволяющим сравнивать сигналы из разных органов чувств, стал электрохимический импульс, генерирующийся в нейронах в ответ на информацию, полученную от органов чувств. Он передается с одной нервной клетки на другую за счет изменения концентрации заряженных ионов по обе стороны клеточной мембраны. Такой электрический импульс характеризуется частотой, амплитудой, модуляцией, интенсивностью, повторяемостью и некоторыми другими параметрами.

Во-вторых, сигналы от разных органов чувств должны прийти в одно и то же место, где их можно было бы сравнить, и не просто сравнить, а выбрать самый важный на данный момент, который и станет побуждением к действию. Это реально осуществить в таком устройстве, где были бы представлены все органы чувств. Для сравнения сигналов от разных органов чувств необходимо скопление тел нервных клеток, которые отвечают за восприятие информации различной природы. Такие скопления, называемые ганглиями или узлами, появляются у беспозвоночных. В узлах располагаются чувствительные нейроны или их отростки, что позволяет клеткам получать информацию с периферии тела.

Но вся эта система бесполезна без управления ответами на сигналы - сокращением или расслаблением мышц, выбросом различных физиологически активных веществ. Для осуществления функций как сравнения, так и управления у хордовых возникает головной и спинной мозг.

Формирование памяти

В постоянно меняющихся условиях окружающей среды простых адаптивных реакций становится недостаточно. К счастью, изменения среды подчиняются неким физическим и планетарным законам. Сделать адекватный поведенческий выбор в нестабильной среде можно, только сравнивая разнородные сигналы с аналогичными сигналами, полученными ранее. Поэтому в процессе эволюции организм вынужден был приобрести еще одно важное преимущество - возможность сравнивать информацию во времени, как бы оценивая опыт предыдущей жизни. Это новое свойство нервной системы называется памятью.

В нервной системе объем памяти определяется числом нервных клеток, вовлекаемых в процесс запоминания. Чтобы запомнить хоть что-то, надо иметь примерно 100 компактно расположенных нейронов, как у актиний. Их память краткосрочна, неустойчива, но эффективна. Если собрать актиний и поместить в аквариум, то все они воспроизведут предыдущую природную ориентацию. Следовательно, каждая особь помнит, в каком направлении "смотрело" ее ротовое отверстие. Еще более сложное поведение актинии обнаружили в экспериментах по обучению. К одним и тем же щупальцам этих животных в течение 5 дней прикладывали несъедобные кусочки бумаги. Актинии сначала отправляли их в рот, проглатывали, а потом выбрасывали. Через 5 дней они перестали есть бумагу. Затем исследователи стали прикладывать бумажки к другим щупальцам. На этот раз животные прекратили поедание бумаги значительно быстрее, чем в первом эксперименте. Этот навык сохранялся в течение 6-10 дней. Такие эксперименты демонстрируют принципиальные отличия животных, обладающих памятью, от существ, не имеющих никаких способов сохранять информацию о внешнем мире и о себе.

Нервная система после выхода позвоночных на сушу

Роль нервной системы стала особенно значительной после выхода позвоночных на сушу, который поставил бывших первичноводных в крайне сложную ситуацию. Они прекрасно приспособились к жизни в водной среде, которая мало походила на наземные условия обитания. Новые требования к нервной системе были продиктованы низким сопротивлением среды, увеличением массы тела, хорошим распространением в воздухе запахов, звуков и электромагнитных волн. Гравитационное поле предъявило крайне жесткие требования к системе соматических рецепторов и к вестибулярному аппарату. Если в воде упасть невозможно, то на поверхности Земли такие неприятности неизбежны. На границе сред сформировались специфические органы движения - конечности. Резкое повышение требований к координации работы мускулатуры тела привело к интенсивному развитию сенсомоторных отделов спинного, заднего и продолговатого мозга. Дыхание в воздушной среде, изменение водно-солевого баланса и механизмов пищеварения обусловили развитие специфических систем контроля этих функций со стороны мозга и периферической нервной системы.

В результате возросла общая масса периферической нервной системы за счет иннервации конечностей, формирования кожной чувствительности и черепно-мозговых нервов, контроля над органами дыхания. Кроме того, произошло увеличение размеров управляющего центра периферической нервной системы - спинного мозга. Сформировались специальные спинномозговые утолщения и специализированные центры управления движениями конечностей в заднем и продолговатом мозге. У крупных динозавров эти отделы превысили размеры головного мозга. Важно и то, что сам головной мозг стал крупнее. Увеличение его размеров вызвано повышением представительства в мозге анализаторов различных типов. В первую очередь это моторные, сенсомоторные, зрительные, слуховые и обонятельные центры. Дальнейшее развитие получила система связей между различными отделами мозга. Они стали основой для быстрого сравнения информации, поступающей от специализированных анализаторов. Параллельно развились внутренний рецепторный комплекс и сложный эффекторный аппарат. Для синхронизации управления рецептора ми, сложной мускулатурой и внутренними органами в процессе эволюции на базе различных отделов мозга возникли ассоциативные центры.

Энергопотребление нервной системы

Насколько новые функции нервной системы окупают затраты на ее содержание? Этот вопрос является ключевым в понимании направления и основных путей эволюции нервной системы животных.

Обладатели развитой нервной системы столкнулись с неожиданными проблемами. Память обременительна. Ее надо поддерживать, "бесполезно" тратя энергию организма. Ведь воспоминание о каком-либо явлении может пригодиться, а может и никогда не понадобиться. Следовательно, роскошная возможность что-либо запоминать - удел энергетически состоятельных животных, животных с высокой скоростью обмена веществ. Но обойтись без нее нельзя - она нужна существам, активно адаптирующимся к внешней среде, использующим разные органы чувств, хранящим и сравнивающим свой индивидуальный опыт.

С появлением теплокровности требования к нервной системе еще более возросли. Любое повышение скорости метаболизма приводит к увеличению потребления пищи. Совершенствование приемов добывания пищи и постоянная экономия энергии - актуальные условия выживания животного с высоким метаболизмом. Для этого необходим мозг с развитой памятью и механизмами принятия быстрых и адекватных решений. Активная жизнь должна регулироваться еще более активным мозгом. Мозгу необходимо работать с заметным опережением складывающейся ситуации, от этого зависят выживание и успех конкретного вида. Однако повышение метаболизма мозга приводит к неизбежному возрастанию затрат на его содержание. Возникает замкнутый круг: теплокровность требует усиления обмена веществ, которое может быть достигнуто только повышением метаболизма нервной системы.

Энергетические издержки большого мозга

По устоявшейся, но необъяснимой традиции под размерами нервной системы понимают массу головного мозга. Относительную его массу вычисляют как отношение массы мозга к массе тела. "Рекордсменом" по величине относительного размера мозга считается колибри. Масса ее мозга составляет 1/12 массы тела. Для птиц и млекопитающих это рекордное отношение. Оно выше только у новорожденного ребенка - 1/7. Относительные массы головных ганглиев пчелы и муравья сопоставимы с относительными размерами головного мозга оленя, а одиночной осы - с мозгом льва… Следовательно, несмотря на общепринятые представления, относительную массу мозга нельзя рассматривать в качестве параметра для оценки интеллекта.

Исходя из величины относительной массы мозга обычно определяют и долю энергетических затрат, приходящуюся на "содержание" нервной системы. Однако в этих подсчетах, как правило, остается неучтенной масса спинного мозга, периферических ганглиев и нервов. Тем не менее все эти компоненты нервной системы, так же как и мозг, потребляют кислород и питательные вещества, а общая масса спинного мозга и периферической нервной системы может существенно превышать массу головного мозга.

На самом деле общий баланс энергетических затрат на функционирование нервной системы складывается из нескольких компонентов. Помимо мозга постоянно в активном состоянии находятся все периферические отделы, поддерживающие тонус мускулатуры, контролирующие дыхание, пищеварение, кровообращение и т. д. Понятно, что отключение одной из таких систем приведет к гибели организма. Нагрузка на эти системы постоянна, но нестабильна. Она меняется в зависимости от поведения. Если животное потребляет пищу, то активность пищеварительной системы возрастает и расходы на содержание ее нервного аппарата увеличиваются. Аналогично повышаются расходы на иннервацию и контроль за скелетной мускулатурой, если животное находится в активном движении. Однако различие между этими энергозатратами в активном состоянии и состоянии покоя относительно невелико, так как тонус мускулатуры или активность кишечника организм вынужден поддерживать постоянно.

полный текст статьи вы можете прочитать перейдя по ссылке: http://elementy.ru/lib/430378


Источник: elementy.ru

Комментарии: