Бесплатный курс «Математика в машинном обучении» |
||
|
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ Атаки на ИИ Внедрение ИИИИ теория Компьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Промпты. Генеративные запросы Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2025-10-01 11:31 Бесплатный курс «Математика в машинном обучении» https://stepik.org/226596 предназначен для тех, кто хочет углубить свои знания в области математики, необходимой для понимания и применения методов машинного обучения и искусственного интеллекта. Этот курс охватывает ключевые математические концепции, лежащие в основе современных алгоритмов машинного обучения, таких как линейная алгебра, теория вероятностей, статистика и оптимизация. https://t.me/ai_machinelearning_big_data - вся база машинного обучения, дополнительные гайды и разбора кода, вы найдете в нашем канале, переходите. Мы начнем с базовых понятий, таких как векторы, матрицы и линейные преобразования, и постепенно перейдем к более сложным темам, таким как градиентный спуск, нормализация данных и работа с тензорами. Особое внимание будет уделено практическим аспектам применения математических инструментов в реальных задачах машинного обучения. По окончании курса вы сможете уверенно понимать и интерпретировать результаты работы различных моделей машинного обучения, а также самостоятельно разрабатывать и настраивать алгоритмы под конкретные задачи. Этот курс станет отличным фундаментом для дальнейшего изучения и применения технологий искусственного интеллекта и машинного обучения. Источник: stepik.org Комментарии: |
|