Do large language models understand us?

МЕНЮ


Главная страница
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


2022-04-23 16:59

ИИ теория

Блез Агуэра-и-Аркас, руководитель группы Google AI в Сиэттле, ставит вопрос ребром: Do large language models understand us? Вопрос лишь на первый взгляд кажется абсурдным, с однозначным ответом, но по ходу чтения его эссе начинаешь все больше задумываться.

Большие языковые модели воплощают идею философского зомби: они работают на статистике и разговаривают [якобы] без понимания. Но этот вопрос не разрешим в каком-либо строгом смысле – Блез показывает, что LLM постоянно моделируют собеседника, ведя нечто вроде внутреннего диалога, генерируя разные ответы и выбирая лучший.

То есть у модели возникает подобие того, что психологи называют «теорией разума», и не ясно, как отличить «настоящее» понимание от «фальшивого».

Рассуждения Блеза особенно заходят на фоне недавних прорывов в машинном обучении, явленных нам в виде DALL-E 2 от OpenAI, создающей картинки по текстовому описанию, и PaLM от Google, умеющей схватывать смысл и контекст беседы.

И на контрасте с недавним эссе Гари Маркуса, CEO компании Robust.AI, Deep Learning Is Hitting a Wall, где он громит любые прорывы, настаивая, что DL не имеет ни малейшего отношения к интеллекту и пониманию. Ян Лекун и другие усмехаются в ответ, приводят Маркусу впечатляющие примеры из DALL-E 2 и PaLM, а тот огрызается в твиттере, называя их сherry picking, и конца у этого сюжета нет.

При всей давней симпатии к Маркусу должен признать, его текст уступает по глубине тексту Агуэра-и-Аркаса.

И немного о трендах. PaLM вмещает 540 млрд параметров, что в три раза больше знаменитой GPT-3, за счет чего результаты в обработке языка резко улучшились. В Китае, используя экзафлопсный суперкомпьютер, создают систему BaGuaLu для обучения модели с 14,5 трлн параметров. Как пишут разработчики BaGuaLu, система потенциально «имеет возможность обучать модели с 174 трлн параметров, что превосходит количество синапсов в человеческом мозге».

https://medium.com/@blaisea/do-large-language-models-understand-us-6f881d6d8e75

https://openai.com/dall-e-2/

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

http://garymarcus.com/

https://nautil.us/deep-learning-is-hitting-a-wall-14467/

https://arxiv.org/abs/2204.02311

https://dl.acm.org/doi/10.1145/3503221.3508417


Источник:
Fatal error: Call to undefined function getPostSource() in /var/www/u36739/data/www/ai-news.ru/news-det.php on line 158