DALL · E от OpenAi: Генерация изображений из текста. Один из важнейших прорывов ИИ в начале 2021 года

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Пару дней назад мы подводили ИИ итоги 2020-го года в мире машинного обучения. 2021-й год только начался, но мы определенно видим одну из важнейших работ в области ИИ текущего года.

Итак, исследователи в области искусственного интеллекта из openai создали нейронную сеть под названием DALL · E, которая генерирует изображения из текстового описания на естественном языке.

Если тебе интересно машинное обучение, то приглашаю в «Мишин Лернинг» — мой субъективный телеграм-канал об искусстве глубокого обучения, нейронных сетях и новостях из мира искусственного интеллекта.

DALL · E представляет собой версию GPT-3 с 12 миллиардами параметров, обученную генерировать изображения из текстовых описаний на датасете из пар текст-изображение. Исследователи обнаружили, что DALL · E обладает огромным репертуаром генеративных возможностей, включая возможность создания антропоморфных животных и других необычных объектов, комбинирующих совершенно нетривиальные свойства, например "кресло в форме авокадо."

Изображения, сгенерированные DALL · E на основании текстового описания "кресло в форме авокадо"
Изображения, сгенерированные DALL · E на основании текстового описания "кресло в форме авокадо"

Можно сказать, что уже были все предпосылки к созданию DALL · E: прошлогодний триумф GPT-3 и успешное создание Image GPT сети, способной к генерации изображений на основе текста, использующей языковую модель трансформер GPT-2. Все уже подходило к тому, чтобы создать новую модель, взяв в этот раз за основу GPT-3. И теперь DALL · E показывает невиданные доселе чудеса манипулирования визуальными концепциями с помощью естественного языка!

Как и GPT-3, DALL · E — это языковая модель-трансформер, принимающая на вход текст и изображение, как последовательность размером до 1280 токенов. Модель обучена максимизировать правдоподобие при генерации токенов, следующих один за другим.

Также, сотрудники из openai выразили озадаченность тем, что уровень реалистичности и результаты работы современных генеративных моделей могут оказать сильное влияние на общество. И опасаются за возможные неоднозначные социальные и экономические последствия использования подобных технологий.

Давайте посмотрим на примеры, которые говорят сами за себя. Исследователи утверждают, что не использовали ручной "cherry picking". Примерами являются изображения, полученные при помощи DALL · E, в которых используются 32 лучших примера из 512-ти сгенерированных, отобранных созданным ранее (теми же openai) нейронным ранжированием CLIP.

Text: a collection of glasses sitting on the table

Изображения, сгенерированные DALL · E
Изображения, сгенерированные DALL · E

Забавно, что алгоритм способен к мультимодальности, и справляется с неоднозначностью слова glasses в английском языке.

Text: an emoji of a baby penguin wearing a blue hat, red gloves, green shirt, and yellow pants

Эмодзи пингвиненка, одетого в голубую шапку, красные перчатки, зеленую футболку и желтые штаны
Эмодзи пингвиненка, одетого в голубую шапку, красные перчатки, зеленую футболку и желтые штаны

DALL · E может не только генерировать изображение с нуля, но и регенерировать (достраивать) любую прямоугольную область существующего изображения, вплоть до нижнего правого угла изображения, в соответствии с текстовым описанием. В качестве примера за основу взяли верхнюю часть фотографии бюста Гомера. Модель принимает на вход это изображение и текст: a photograph of a bust of homer

Text: a photograph of a bust of homer

Фотография бюста Гомера
Фотография бюста Гомера

Особенно поражает то, что DALL · E выучил исторический и географический контекст. Модель способна к обобщению тенденций в дизайне и технологиях. Вот пример того, как DALL · E генерирует телефонные аппараты разных десятилетий двадцатого века.

Text: a photo of phone from the ...

Фотографии телефонов разных десятилетий XX века
Фотографии телефонов разных десятилетий XX века

DALL · E попросили сгенерировать изображение по следующему описанию: "гостиная с двумя белыми креслами и картиной Колизея, картина установлена ??над современным камином". Как оказалось DALL · E может создавать картины на самые разные темы, включая реальные локации, такие как «Колизей», и вымышленных персонажей, таких как «йода». Для каждого объекта DALL · E предлагает множество вариантов. В то время как картина почти всегда присутствует на изображении, DALL · E иногда не может нарисовать камин или правильное количество кресел.

Text: a living room with two white armchairs and painting of the colosseum. the painting is mounted above a modern fireplace

Гостиная с двумя белыми креслами и картиной Колизея, висящей ??над современным камином
Гостиная с двумя белыми креслами и картиной Колизея, висящей ??над современным камином

Название модели DALL · E является словослиянием имени художника Сальвадора Дали и робота WALL · E от Pixar. Вышел такой своеобразный Вали-Дали. Вообще в мире ИИ "придумывание" таких оригинальных названий это некий тренд. Что определенно радует, и делает эту область еще более оригинальной.

Старый добрый перенос стиля WALL · E  в Dal?
Старый добрый перенос стиля WALL · E в Dal?

Для пущего сюрреализма и оправдания своего названия DALL · E "попросили" сгенерировать животных, синтезированных из множества понятий, включая музыкальные инструменты, продукты питания и предметы домашнего обихода. Хотя это не всегда удавалось, исследователи обнаруживали, что DALL · E иногда принимает во внимание формы двух объектов при решении о том, как их объединить. Например, когда предлагается нарисовать «улитку-арфу».

Text: a snail made of harp

Улитка-Арфа. Фантастические твари и где они обитают..
Улитка-Арфа. Фантастические твари и где они обитают..

Вывод

DALL · E — это декодер-трансформер, который принимает и текст, и изображение в виде единой последовательности токенов (1280 токенов = 256 для текста + 1024 для изображения) и далее генерирует изображения авторегрессивном режиме. 

Что можно сказать? Наступает эра "великого объединения" языковых моделей, компьютерного зрения и генеративных сетей. То что мы видим сейчас, уже поражает воображение своими результатами, не говоря уже о том, насколько подобные подходы могут изменить процесс генерации контента.

Как будет возможность, подготовлю уже технический разбор самой модели DALL · E, учитывая, что ребята из openai обещают предоставить более подробную информацию об архитектуре и обучении модели в ближайшее время.

Что ты думаешь о DALL · E и подобных генеративных нейронных моделях, способных создавать визуальный контент по текстовому описанию? Где может быть полезна такая технология? Насколько тебя впечатлили результаты? Давай обсудим в комментариях.


Источник: habr.com

Комментарии: