[1] Глубокое обучение с точки зрения практика [2018] Гибсон, Паттерсон

МЕНЮ


Искусственный интеллект. Новости
Поиск
Регистрация на сайте
Сбор средств на аренду сервера для ai-news

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация




RSS


RSS новости

Новостная лента форума ailab.ru


[1] Глубокое обучение с точки зрения практика [2018] Гибсон, Паттерсон

Интерес к машинному обучению зашкаливает, но завышенные ожидания нередко губят проекты еще на ранней стадии. Как машинное обучение — и особенно глубокие нейронные сети — может изменить вашу организацию? Эта книга не только содержит практически полезную информацию о предмете, но и поможет приступить к созданию эффективных сетей глубокого обучения. Авторы сначала раскрывают фундаментальные вопросы глубокого обучения — настройка, распараллеливание, векторизация, конвейеры операций — актуальные для любой библиотеки, а затем переходят к библиотеке Deeplearning4j

(DL4J), предназначенной для разработки технологических процессов профессионального уровня. На реальных примерах читатель познакомится с методами и стратегиями обучения глубоких сетей с различной архитектурой и их распараллеливания в кластерах Hadoop и Spark.

• концепции машинного обучения вообще и глубокого обучения

в частности;

• эволюция глубоких сетей из нейронных;

• основные архитектуры глубоких сетей, в т. ч. сверточные и

рекуррентные нейронные сети;

• как выбрать сеть, отвечающую поставленной задаче;

• основы настройки нейронных сетей вообще и конкретных глубоких

архитектур;

• применение методов векторизации к данным различных типов

с помощью библиотеки DataVec;

• использование DL4J на платформах Hadoop и Spark.

[2] Глубокое обучение. Погружение в мир нейронных сетей [2018] Николенко

Перед вами - первая книга о глубоком обучении, написанная на русском языке. Глубокие модели оказались ключом, который подходит ко всем замкам сразу: новые архитектуры и алгоритмы обучения, а также увеличившиеся вычислительные мощности и появившиеся огромные наборы данных, привели к революционным прорывам в компьютерном зрении, распознавании речи, обработке естественного языка и многих других типично "человеческих" задачах машинного обучения. Эти захватывающие идеи, вся история и основные компоненты революции глубокого обучения, а также самые современные достижения этой области, доступно и интересно изложены в книге. Максимум объяснений, минимум кода, серьезный материал о машинном обучении и увлекательное изложение - в этой уникальной работе замечательных российских ученых и интеллектуалов.

[3] Глубокое обучение [2018] Гудфеллоу

Глубокое обучение — это вид машинного обучения, наделяющий компьютеры способностью учиться на опыте и понимать мир в терминах иерархии концепций. Поскольку компьютер приобретает знания из опыта, отпадает нужда в человеке-операторе, который формально описывает необходимые компьютеру знания. Иерархическая организация позволяет компьютеру обучаться сложным концепциям, конструируя их из более простых; граф такой иерархии может содержать много уровней. В этой книге читатель найдет широкий обзор тем, изучаемых в глубоком обучении. Книга содержит математические и концептуальные основы линейной алгебры, теории вероятностей и теории информации, численных расчетов и машинного обучения в том объеме, который необходим для понимания материала. Описываются приемы глубокого обучения, применяемые на практике, в том числе глубокие сети прямого распространения, регуляризация, алгоритмы оптимизации, сверточные сети, моделирование последовательностей, и др. Рассматриваются такие приложения, как обработка естественных языков, распознавание речи, компьютерное зрение, онлайновые рекомендательные системы, биоинформатика и видеоигры. Наконец, описываются перспективные направления исследований: линейные факторные модели, автокодировщики, обучение представлений, структурные вероятностные модели, методы Монте-Карло, статистическая сумма, приближенный вывод и глубокие порождающие модели. Издание будет полезно студентами и аспирантам, а также опытным программистам, которые хотели бы применить глубокое обучение в составе своих продуктов или платформ.

[4] Глубокое обучение на R [2018] Шолле Ф.

Глубокое обучение — Deep learning — это набор алгоритмов машинного обучения, которые моделируют высокоуровневые абстракции в данных, используя архитектуры, состоящие из множества нелинейных преобразований. Согласитесь, эта фраза звучит угрожающе. Но всё не так страшно, если о глубоком обучении рассказывает Франсуа Шолле, который создал Keras — самую мощную библиотеку для работы с нейронными сетями. Познакомьтесь с глубоким обучением на практических примерах из самых разнообразных областей.

Книга делится на две части: в первой даны теоретические основы, вторая посвящена решению конкретных задач. Это позволит вам не только разобраться в основах DL, но и научиться использовать новые возможности на практике. Обучение — это путешествие длиной в жизнь, особенно в области искусственного интеллекта, где неизвестностей гораздо больше, чем определенности.

[5] Искусственный интеллект с примерами на Python [2019] Пратик Джоши

Искусственный интеллект становится неотъемлемым атрибутом современного мира, управляемого технологиями и данными. Он интенсивно применяется в таких областях, как поисковые системы, распознавание образов, робототехника, беспилотные автомобили и т.п. В этой книге исследуются различные сценарии, взятые из реальной жизни. Прочитав ее, вы будете знать, какие алгоритмы искусственного интеллекта следует применять в том или ином контексте.

Автор начинает с рассмотрения общих концепций искусственного интеллекта, после чего переходит к обсуждению более сложных тем, таких как предельно случайные леса, скрытые марковские модели, генетические алгоритмы, сверточные нейронные сети и др. Вы узнаете о том, как принимать обоснованные решения при выборе необходимых алгоритмов, а также о том, как реализовывать эти алгоритмы на языке Python для достижения наилучших результатов. Если вы хотите создавать многоцелевые приложения для обработки информации, содержащейся в изображениях, тексте, голосовых и других данных, то эта книга станет для вас надежным подспорьем.

Основные темы книги:

• Различные методы классификации и регрессии данных

• Концепция кластеризации и ее применение для автоматического сегментирования данных

• Создание интеллектуальных рекомендательных систем

• Логическое программирование и способы его применения

• Построение автоматизированных систем распознавания речи

• Основы эвристического поиска и генетического программирования

• Разработка игр с использованием искусственного интеллекта

• Обучение с подкреплением

• Создание интеллектуальных приложений, связанных с обработкой изображений, текста и последовательных данных

• Алгоритмы глубокого обучения и создание приложений на их основе

[6] Библиотека Keras - инструмент глубокого обучения. Реализация нейронных сетей с помощью библиотек Theano и TensorFlow [2018] Джулли

Книга представляет собой краткое, но обстоятельное введение в современные нейронные сети, искусственный интеллект и технологии глубокого обучения. Рассмотрено более 20 работоспособных нейронных сетей, написанных на языке Python с использованием модульной библиотеки Keras, работающей поверх библиотек TensorFlow от Google или Theano от компании Lisa Lab. Описан функциональный API библиотеки Keras и возможности его расширения. Представлены алгоритмы обучения с учителем (простая линейная регрессия, классический многослойный перцептрон, глубокие сверточные сети), а также алгоритмы обучения без учителя – автокодировщики и порождающие сети. Дано введение в технологию глубокого обучения с подкреплением и ее применение к построению игр со встроенным искусственным интеллектом. Издание предназначено для программистов и специалистов по анализу и обработке данных.

[7] Грокаем глубокое обучение [2019] Эндрю Траск

Глубокое обучение — это раздел искусственного интеллекта, цель которого научить компьютеры обу­чаться с помощью нейронных сетей — технологии, созданной по образу и подобию человеческого мозга.

Онлайн-переводчики, беспилотные автомобили, рекомендации по выбору товаров именно для вас и виртуальные голосовые помощники — вот лишь несколько достижений, которые стали возможны благодаря глубокому обучению. «Грокаем глубокое обучение» научит конструировать нейронные сети с нуля! Эндрю Траск знакомит со всеми деталями и тонкостями этой нелегкой задачи. Python и библиотека NumPy способны научить ваши нейронные сети видеть и распознавать изображения, переводить любые тексты на все языки мира и даже писать не хуже Шекспира!

[8] Глубокое обучение на R [2018] Шолле Ф

Глубокое обучение — Deep learning — это набор алгоритмов машинного обучения, которые моделируют высокоуровневые абстракции в данных, используя архитектуры, состоящие из множества нелинейных преобразований. Согласитесь, эта фраза звучит угрожающе. Но все не так страшно, если о глубоком обучении рассказывает Франсуа Шолле, который создал Keras — самую мощную библиотеку для работы с нейронными сетями. Познакомьтесь с глубоким обучением на практических примерах из самых разнообразных областей. Книга делится на две части в первой даны теоретические основы, вторая посвящена решению конкретных задач. Это позволит вам не только разобраться в основах DL, но и научиться использовать новые возможности на практике. Книга написана для людей с опытом программирования на R, желающих быстро познакомиться с глубоким обучением на практике, и является переложением бестселлера Франсуа Шолле «Глубокое обучение на Python», но использующим примеры на базе интерфейса R для Keras.

Скачать: tgmsg.ru/physics_lib

#подборка_книг@physics_math

#искусственный_интеллект@physics_math

#машинное_обучение@physics_math

#python@physics_math

#программирование@physics_math

#машинное_обучение@physics_math

#python #программирование #машинное_обучение

#искусственный_интеллект

Комментарии: