Big Data от А до Я. Часть 1: Принципы работы с большими данными, парадигма MapReduce

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.

Проблематику больших данных постараемся описывать с разных сторон: основные принципы работы с данными, инструменты, примеры решения практических задач. Отдельное внимание окажем теме машинного обучения.

Начинать надо от простого к сложному, поэтому первая статья – о принципах работы с большими данными и парадигме MapReduce.

История вопроса и определение термина

Термин Big Data появился сравнительно недавно. Google Trends показывает начало активного роста употребления словосочетания начиная с 2011 года (ссылка):


При этом уже сейчас термин не использует только ленивый. Особенно часто не по делу термин используют маркетологи. Так что же такое Big Data на самом деле? Раз уж я решил системно изложить и освятить вопрос – необходимо определиться с понятием.

В своей практике я встречался с разными определениями:

· Big Data – это когда данных больше, чем 100Гб (500Гб, 1ТБ, кому что нравится)

· Big Data – это такие данные, которые невозможно обрабатывать в Excel

· Big Data – это такие данные, которые невозможно обработать на одном компьютере

И даже такие:

· Вig Data – это вообще любые данные.

· Big Data не существует, ее придумали маркетологи.

В этом цикле статей я буду придерживаться определения с wikipedia:

Большие данные (англ. big data) — серия подходов, инструментов и методов обработки структурированных и неструктурированных данных огромных объёмов и значительного многообразия для получения воспринимаемых человеком результатов, эффективных в условиях непрерывного прироста, распределения по многочисленным узлам вычислительной сети, сформировавшихся в конце 2000-х годов, альтернативных традиционным системам управления базами данных и решениям класса Business Intelligence.

Таким образом под Big Data я буду понимать не какой-то конкретный объём данных и даже не сами данные, а методы их обработки, которые позволяют распредёлено обрабатывать информацию. Эти методы можно применить как к огромным массивам данных (таким как содержание всех страниц в интернете), так и к маленьким (таким как содержимое этой статьи).

Приведу несколько примеров того, что может быть источником данных, для которых необходимы методы работы с большими данными:

· Логи поведения пользователей в интернете

· GPS-сигналы от автомобилей для транспортной компании

· Данные, снимаемые с датчиков в большом адронном коллайдере

· Оцифрованные книги в Российской Государственной Библиотеке

· Информация о транзакциях всех клиентов банка

· Информация о всех покупках в крупной ритейл сети и т.д.

Количество источников данных стремительно растёт, а значит технологии их обработки становятся всё более востребованными.

Принципы работы с большими данными

Исходя из определения Big Data, можно сформулировать основные принципы работы с такими данными:

1. Горизонтальная масштабируемость. Поскольку данных может быть сколь угодно много – любая система, которая подразумевает обработку больших данных, должна быть расширяемой. В 2 раза вырос объём данных – в 2 раза увеличили количество железа в кластере и всё продолжило работать.

2. Отказоустойчивость. Принцип горизонтальной масштабируемости подразумевает, что машин в кластере может быть много. Например, Hadoop-кластер Yahoo имеет более 42000 машин (по этой ссылке можно посмотреть размеры кластера в разных организациях). Это означает, что часть этих машин будет гарантированно выходить из строя. Методы работы с большими данными должны учитывать возможность таких сбоев и переживать их без каких-либо значимых последствий.

3. Локальность данных. В больших распределённых системах данные распределены по большому количеству машин. Если данные физически находятся на одном сервере, а обрабатываются на другом – расходы на передачу данных могут превысить расходы на саму обработку. Поэтому одним из важнейших принципов проектирования BigData-решений является принцип локальности данных – по возможности обрабатываем данные на той же машине, на которой их храним.

Все современные средства работы с большими данными так или иначе следуют этим трём принципам. Для того, чтобы им следовать – необходимо придумывать какие-то методы, способы и парадигмы разработки средств разработки данных. Один из самых классических методов я разберу в сегодняшней статье.

MapReduce

Про MapReduce на хабре уже писали (раз, два, три), но раз уж цикл статей претендует на системное изложение вопросов Big Data – без MapReduce в первой статье не обойтись J

MapReduce – это модель распределенной обработки данных, предложенная компанией Google для обработки больших объёмов данных на компьютерных кластерах. MapReduce неплохо иллюстрируется следующей картинкой (взято по ссылке):


MapReduce предполагает, что данные организованы в виде некоторых записей. Обработка данных происходит в 3 стадии:

1. Стадия Map. На этой стадии данные предобрабатываются при помощи функции map(), которую определяет пользователь. Работа этой стадии заключается в предобработке и фильтрации данных. Работа очень похожа на операцию map в функциональных языках программирования – пользовательская функция применяется к каждой входной записи.

Функция map() примененная к одной входной записи и выдаёт множество пар ключ-значение. Множество – т.е. может выдать только одну запись, может не выдать ничего, а может выдать несколько пар ключ-значение. Что будет находится в ключе и в значении – решать пользователю, но ключ – очень важная вещь, так как данные с одним ключом в будущем попадут в один экземпляр функции reduce.

2. Стадия Shuffle. Проходит незаметно для пользователя. В этой стадии вывод функции map «разбирается по корзинам» – каждая корзина соответствует одному ключу вывода стадии map. В дальнейшем эти корзины послужат входом для reduce.

3. Стадия Reduce. Каждая «корзина» со значениями, сформированная на стадии shuffle, попадает на вход функции reduce().

Функция reduce задаётся пользователем и вычисляет финальный результат для отдельной «корзины». Множество всех значений, возвращённых функцией reduce(), является финальным результатом MapReduce-задачи.

Несколько дополнительных фактов про MapReduce:

1) Все запуски функции map работают независимо и могут работать параллельно, в том числе на разных машинах кластера.

2) Все запуски функции reduce работают независимо и могут работать параллельно, в том числе на разных машинах кластера.

3) Shuffle внутри себя представляет параллельную сортировку, поэтому также может работать на разных машинах кластера. Пункты 1-3 позволяют выполнить принцип горизонтальной масштабируемости.

4) Функция map, как правило, применяется на той же машине, на которой хранятся данные – это позволяет снизить передачу данных по сети (принцип локальности данных).

5) MapReduce – это всегда полное сканирование данных, никаких индексов нет. Это означает, что MapReduce плохо применим, когда ответ требуется очень быстро.

Примеры задач, эффективно решаемых при помощи MapReduce

Word Count

Начнём с классической задачи – Word Count. Задача формулируется следующим образом: имеется большой корпус документов. Задача – для каждого слова, хотя бы один раз встречающегося в корпусе, посчитать суммарное количество раз, которое оно встретилось в корпусе.

Решение:

Раз имеем большой корпус документов – пусть один документ будет одной входной записью для MapRreduce–задачи. В MapReduce мы можем только задавать пользовательские функции, что мы и сделаем (будем использовать python-like псевдокод):

def map(doc): 	for word in doc: 		yield word, 1 


def reduce(word, values): 	yield word, sum(values) 




Функция map превращает входной документ в набор пар (слово, 1), shuffle прозрачно для нас превращает это в пары (слово, [1,1,1,1,1,1]), reduce суммирует эти единички, возвращая финальный ответ для слова.

Обработка логов рекламной системы

Второй пример взят из реальной практики Data-Centric Alliance.

Задача: имеется csv-лог рекламной системы вида:

<user_id>,<country>,<city>,<campaign_id>,<creative_id>,<payment></p>  11111,RU,Moscow,2,4,0.3 22222,RU,Voronezh,2,3,0.2 13413,UA,Kiev,4,11,0.7 … 

Необходимо рассчитать среднюю стоимость показа рекламы по городам России.

Решение:

def map(record): 	user_id, country, city, campaign_id, creative_id, payment = record.split(",") 	payment=float(payment) 	if country == "RU": 		yield city, payment  

def reduce(city, payments): 	yield city, sum(payments)/len(payments)  




Функция map проверяет, нужна ли нам данная запись – и если нужна, оставляет только нужную информацию (город и размер платежа). Функция reduce вычисляет финальный ответ по городу, имея список всех платежей в этом городе.

Резюме

В статье мы рассмотрели несколько вводных моментов про большие данные:

· Что такое Big Data и откуда берётся;

· Каким основным принципам следуют все средства и парадигмы работы с большими данными;

· Рассмотрели парадигму MapReduce и разобрали несколько задач, в которой она может быть применена.

Первая статья была больше теоретической, во второй статье мы перейдем к практике, рассмотрим Hadoop – одну из самых известных технологий для работы с большими данными и покажем, как запускать MapReduce-задачи на Hadoop.

В последующих статьях цикла мы рассмотрим более сложные задачи, решаемые при помощи MapReduce, расскажем об ограничениях MapReduce и о том, какими инструментами и техниками можно обходить эти ограничения.

Спасибо за внимание, готовы ответить на ваши вопросы.

Youtube-Канал автора об анализе данных

Ссылки на другие части цикла:

Часть 2: Hadoop
Часть 3: Приемы и стратегии разработки MapReduce-приложений
Часть 4: Hbase

Источник: habrahabr.ru

Комментарии: