Роботы научились ходить путем проб и ошибок

МЕНЮ


Новости ИИ
Поиск

ТЕМЫ


Внедрение ИИНовости ИИРобототехника, БПЛАТрансгуманизмЛингвистика, рбработка текстаБиология, теория эволюцииВиртулаьная и дополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информации

АРХИВ


Август 2017
Июль 2017
Июнь 2017
Май 2017
Апрель 2017
Март 2017
Февраль 2017
Январь 2017
Декабрь 2016
Ноябрь 2016
Октябрь 2016
Сентябрь 2016
Август 2016
Июль 2016
Июнь 2016
Май 2016
Апрель 2016
Март 2016
Февраль 2016
Январь 2016
0000

RSS


RSS новости
птичий грипп
Реновация. Снос пятиэтажек в Москве

Новостная лента форума ailab.ru

2017-08-02 10:05

робототехника

Исследователи из Канады и Сингапура разработали алгоритм, который позволяет двуногим виртуальным роботам обучаться хождению и бегу путем проб и ошибок, подобно тому как тем же навыкам обучаются люди. Ученые считают, что впоследствии этот алгоритм можно использовать и при обучении реальных роботов, а также при создании компьютерной анимации в играх и фильмах. Алгоритм был представлен на конференции по компьютерной графике SIGGRAPH 2017, а его подробное описание доступно на сайте Университета Британской Колумбии.

Раньше для обучения компьютерных программ или роботов каким-либо действиям инженерам приходилось «вручную» прописывать в кодах программ поведение и реакцию на те или иные условия. В последние десятилетия все чаще применяется другой подход — машинное обучение. Оно позволяет обучаемым алгоритмам не только следовать заранее заданным алгоритмам, но и самостоятельно искать наиболее оптимальный, на их взгляд, метод решения задачи.

Канадские инженеры решили применить эту стратегию для создания компьютерных персонажей и роботов, которые эффективно и реалистично ходят на двух ногах. Для этого они использовали глубокое обучение с подкреплением. Этот вид машинного обучения подразумевает, что обучаемый алгоритм при взаимодействии со средой получает ответ — награду или штраф. Представленная исследователями реализация алгоритма состоит из двух основных компонентов — низкоуровневого и высокоуровневого контроллеров-планировщиков. Низкоуровневый компонент отвечает за планирование конкретных шагов, стиль ходьбы, учитывает параметры близлежащего рельефа. Контроллер высокого уровня отвечал за более долгосрочное планирование — к примеру, позволял роботу планировать свой маршрут с учетом препятствий.

Обучение происходит в виртуальной среде с изменяемыми параметрами. Так, робот может находиться на узкой тропе в горах или на льду. Помимо этого, среда менялась динамически. Например, плоские и неподвижные поверхности сменялись подвижной поверхностью наподобие траволатора, также периодически на робота падали кубические блоки разного размера.

За счет машинного обучения робот научился ловко и быстро передвигаться в разных условиях и даже пинать мяч к цели. Исследователи считают, что в будущем алгоритм можно будет адаптировать для множества задач, не только связанных с робототехникой. К примеру, с его помощью можно будет создавать анатомически точные анимации движения людей в играх и фильмах с применением компьютерной графики, чтобы заменить используемые сегодня камеры и датчики захвата движения.

Несмотря на то, что существуют и другие системы обучения алгоритмов в виртуальных пространствах, перенос навыков в реальный мир или между роботами разной конструкции представляет собой серьезную проблему. Недавно специалисты из Массачусетского технологического института заявили, что частично решили эту проблему и создали систему, которая облегчает перенос навыков между роботами разной конструкции.

Григорий Копиев


Источник: nplus1.ru