В IBM запустили сверточную нейронную сеть на микрочипе TrueNorth

МЕНЮ


Новости ИИ
Поиск

ТЕМЫ


Внедрение ИИНовости ИИРобототехника, БПЛАТрансгуманизмЛингвистика, обработка текстаБиология, теория эволюцииВиртулаьная и дополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информации

АРХИВ


Август 2017
Июль 2017
Июнь 2017
Май 2017
Апрель 2017
Март 2017
Февраль 2017
Январь 2017
Декабрь 2016
Ноябрь 2016
Октябрь 2016
Сентябрь 2016
Август 2016
Июль 2016
Июнь 2016
Май 2016
Апрель 2016
Март 2016
Февраль 2016
Январь 2016
0000

RSS


RSS новости
Ураган харви в США

Новостная лента форума ailab.ru

Исследователи IBM сделали еще один шаг в сторону компьютеров, имитирующих мозг человека, запустив сверточную нейронную сеть на нейроморфическом чипе TrueNorth, который потребляет в тысячи раз меньше энергии, чем современные процессоры.

Ведущие компании мира тратят миллиарды долларов на то, чтобы научить машины делать то, что умеет двухлетний ребенок – различать предметы. Современные компьютеры работают на пределе своих возможностей, но все-таки не могут приблизиться к вычислительным способностям мозга человека. Приблизиться к его уровню позволяет нейроморфический чип, имитирующий мозг более эффективно. Однако, один тип нейронных сетей, так называемая сверточная нейронная сеть (CNN), до сих пор не поддавался моделированию в нейроморфическом железе.

Чип TrueNorth – это самодостаточная вычислительная система, совмещающая процессор и память. Каждый чип состоит из 4096 нейросинаптических ядер с миллионом программируемых нейронов и 266 миллионами конфигурируемых синапсов. При этом он потребляет гораздо меньше энергии, плотность мощности составляет 20 милливатт на кв. см, что почти в 10 000 раз меньше, чем у современных микропроцессоров.   

Точность TrueNorth в распознавании изображений и голоса не уступает лучшим современным системам, но использует гораздо меньше энергии и работает быстрее. А сочетание сверточной сети с нейроморфическими чипами может привести к созданию более умных смартфонов и машин, которые понимают вербальные команды, даже если мы произносим их не очень отчетливо.

Однако, несмотря на производительность TrueNorth, его создавали, не принимая в расчет сверточную нейронную сеть. Считалось, что эффективно использовать на нем интерфейс глубокого обучения невозможно. Работа ученых, опубликованная в журнале The Proceedings of the National Academy of Sciences, доказала обратное.

Дальнейшая цель разработчиков - «композиционность», то есть возможность поддерживать множество различных типов сетей, размещенных бок о бок в системе TrueNorth. Эта композицонность имитирует работу мозга, в котором разные сети гармонично взаимосвязаны друг с другом, сообщает Ars Technica.   

По мнению профессора Стэнфордского университета Боахена, его система Neurogrid, основанная на аналого-цифровом подходе, была бы в 20 более более эффективной, чем полностью цифровой TrueNorth, если бы работала на транзисторах 28 нм. По его мнению, нейроморфические системы не заменят, а дополнят современные компьютеры. 


Источник: hightech.fm