Глубокое обучение поможет роботам определить позу человека

МЕНЮ


Новости ИИ
Поиск

ТЕМЫ


Внедрение ИИНовости ИИРобототехника, БПЛАТрансгуманизмЛингвистика, обработка текстаБиология, теория эволюцииВиртулаьная и дополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информации

АРХИВ


Сентябрь 2017
Август 2017
Июль 2017
Июнь 2017
Май 2017
Апрель 2017
Март 2017
Февраль 2017
Январь 2017
Декабрь 2016
Ноябрь 2016
Октябрь 2016
Сентябрь 2016
Август 2016
Июль 2016
Июнь 2016
Май 2016
Апрель 2016
Март 2016
Февраль 2016
Январь 2016
0000

RSS


RSS новости
Ураган харви в США

Новостная лента форума ailab.ru

2017-07-13 10:18

робототехника


Исследователи из Технологического университета Тоёхаси в Японии разработали новый метод автоматического определения позы человека. Они научили нейросеть генерировать объемные модели тела и размечать на них его части. Созданная ими открытая база данных с 10 тысячами объемных изображений поможет роботам лучше выявлять опасные для здоровья человека ситуации. Статья опубликована в журнале Pattern Recognition и доступна на сайте издательства Elsevier.

Важная черта робота-помощника, работающего с людьми с ограниченными возможностями и пациентами медицинских учреждений, — умение различать позы тела человека. Этот навык полезен при определении опасных для жизни ситуаций: например, падения в результате обморока или припадка. Системы для автоматического определения положения тела человека уже разрабатывались, однако они, в основном, умеют определять позу человека только в положении стоя или сидя, когда все части тела могут быть распознаны. Другое ограничение уже существующих методик заключается в том, что они могут распознать только цветные изображения человека, что может вызвать трудности при определении позы в плохо освещенном месте.

Авторы новой технологии создали базу данных, которая содержит объемные изображения человека с размеченными частями тела. Сгенерировав модель человеческого тела, исследователи добавили к ней информацию о скелете для определения изгибов в различных позах и цветную разметку частей тела (всего десять частей тела, включая голову, торс и части конечностей). С помощью технологии захвата движений к модели затем добавили информацию о различных движениях и положениях тела реальных людей. Результатом этого процесса является объемное изображение человека в различных позах и с размеченными цветом частями тела. 


Схема создания объемных изображений человеческого тела

Nishi & Miura / Patter Recognition 2017

База данных затем была использована для обучения полносверточной нейросети (fully convolutional network, коротко FCN), работающей с применением глубокого обучения. Применение этой нейросети для распознавания частей тела реальных людей дает хорошие результаты: так, например, голова была правильно распознана в 69 процентах случаев, а голень левой ноги – в 86 процентах случаев.

Исследователи планируют улучшить свою технологию и заняться разработкой робота-помощника, способного выявлять опасные для жизни ситуации, основываясь на определении позы, и оказывать нужную помощь. О роботе-помощнике для инвалидов, представленном компанией Toyota, вы можете прочитать в нашей заметке.

Елизавета Ивтушок

Источник: news.nplus1.ru