Машинное обучение позволило выявить аутизм у младенцев с высокой точностью

МЕНЮ


Новости ИИ
Поиск

ТЕМЫ


Внедрение ИИНовости ИИРобототехника, БПЛАТрансгуманизмЛингвистика, рбработка текстаБиология, теория эволюцииВиртулаьная и дополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информации

АРХИВ


Июнь 2017
Май 2017
Апрель 2017
Март 2017
Февраль 2017
Январь 2017
Декабрь 2016
Ноябрь 2016
Октябрь 2016
Сентябрь 2016
Август 2016
Июль 2016
Июнь 2016
Май 2016
Апрель 2016
Март 2016
Февраль 2016
Январь 2016
0000

RSS


RSS новости
птичий грипп

Новостная лента форума ailab.ru


Emerson et al / Science Translational Medicine 2017

Психологи из Университета Северной Каролины (США) научились с высокой точностью диагностировать расстройства аутистического спектра у шестимесячных детей. В этом им помог алгоритм машинного обучения, который анализировал карты функциональной связности мозга младенцев, полученные при помощи функциональной магнито-резонансной томографии. Краткое сообщение об исследовании опубликовано в журнале Science Translational Medicine.

Аутизм и расстройства аутистического спектра – неврологические заболевания развития, которые характеризуются нарушениями в социальной сфере и стереотипным (повторяющимся) поведением. В США этот диагноз ставится одному из 68 детей. Аутизм не поддается лечению, хотя специальные педагогические программы могут помочь детям адаптироваться и во взрослом возрасте вести самостоятельную жизнь.

Успех поведенческой терапии зависит от того, как рано с ребенком начали работать специалисты, поэтому важна как можно более ранняя диагностика расстройства. Симптомы, как правило, начинают проявляться на втором году жизни. Существуют диагностические признаки, основанные, к примеру, на анализе движения глаз (eye-tracking), по которым можно предсказать расстройство в возрасте от шести месяцев до года, однако они считаются недостаточно надежными.

Ранее было показано, что для аутизма характерно неравномерное развитие разных областей мозга, что можно детектировать при помощи магнито-резонансной томографии (МРТ). С развитием функциональной МРТ стало возможным определять функциональную связанность между разными участками мозга, чем и воспользовались исследователи в новой работе.


Различия в функциональной связанности участков мозга у здоровых детей (синие линии) и детей с диагностированным расстройством (красные линии).

Emerson et al / Science Translational Medicine 2017

Исследуемая выборка включала 59 младенцев из группы высокого риска развития расстройств аутистического спектра, то есть из семей с уже известными случаями заболевания. В возрасте шести месяцев им сделали МРТ с тем, чтобы составить карту функциональной связанности разных участков мозга. Эта методика предполагает, что области, которые в состоянии покоя или действия характеризуются сигналом одной интенсивности, являются функционально связанными. На основе матриц связанности областей полученных изображений нейросеть предсказала расстройство у девяти младенцев.

Результат анализа изображений фМРТ алгоритмом

Emerson et al / Science Translational Medicine 2017

В возрасте двух лет все дети были обследованы специалистами на предмет способности к общению, обучению и наличия повторяющегося поведения. По результатам обследования болезнь была диагностирована у 11 из 59 детей. Сравнение с предсказаниями алгоритма показало, что нейросеть правильно определила больных детей, пропустив лишь два случая заболевания, и правильно определила здоровых. Таким образом, функциональная МРТ в сочетании с машинным алгоритмом анализа данных зарекомендовала себя как надежный диагностический инструмент, позволяющий распознать заболевание уже в раннем возрасте.

Применение машинного обучения получает все большее распространение в диагностике. Платформа по проведению конкурсов по машинному обучению Kaggle даже проводила соревнование, направленное на улучшение распознавания рака легкого на основе анализа изображений.

Идея картирования функционально связанных областей мозга лежит в основе проекта «Коннектом человека», который стартовал в 2010 году.

Дарья Спасская


Источник: news.nplus1.ru