Гемато-энцефалический барьер - линия обороны мозга

МЕНЮ


Новости ИИ
Поиск

ТЕМЫ


Big data
Беспилотные автомобили
БПЛА
генетические алгоритмы
Головной мозг
городские сумасшедшие
дополнительная реальность
ИИ проекты
интернет вещей
искусственный интеллект
ИТ-гиганты
квантовые компьютеры
кибербезопасность
Кластеризация
Машинное обучение
Методы научного исследования
наука и образование
нейронные процессоры
нейронные сети
Нейронные сети: искусственные
Нейронные сети: реализация
облачные вычисления
Поведение животных
Поисковые алгоритмы. Ранжирование
Психология
Работа памяти
Разработка ПО
распознавание образов
Распознавание речи
робототехника
Семинары
суперкомпьютеры
Теория эволюции
техническое зрение
Трансгуманизм
Угроза искусственного интеллекта
Чат-боты

АРХИВ


Апрель 2017
Март 2017
Февраль 2017
Январь 2017
Декабрь 2016
Ноябрь 2016
Октябрь 2016
Сентябрь 2016
Август 2016
Июль 2016
Июнь 2016
Май 2016
Апрель 2016
Март 2016
Февраль 2016
Январь 2016
0000

RSS


RSS новости
свиной грипп

Новостная лента форума ailab.ru

Гемато-энцефалический барьер - линия обороны мозга. Часть 1

Энцефалит, менингит, столбняк, рассеянный склероз, дрожательный паралич... Эти заболевания центральной нервной системы пользуются печальной славой трудноизлечимых... В подобных случаях происходит нечто загадочное: инфекция проникает в мозг, а фармакологические препараты, применяемые при лечении нервных заболеваний, туда не попадают – не пропускает так называемый гематоэнцефалический барьер. Врачам приходится искать обходные пути, но поскольку механизм этот изучен еще далеко не достаточно, то медицина часто оказывается беспомощной в борьбе с этими болезнями. Этим проблемам посвящена предлагаемая читателям статья профессора Г.Н. Кассиля.

Возьмем для примера столбняк – тяжелое инфекционное заболевание, поражающее клетки мозга. С тех пор, как была изготовлена противостолбнячная сыворотка, число заболеваний столбняком резко снизилось. Эта сыворотка, если она введена в самом начале заболевания, не только предохраняет, но и во многих случаях излечивает от столбняка. Если же недуг уже развился, если столбнячный токсин проник в клетки нервной системы, сыворотка даже в огромных количествах не помогает, так как она не доходит до пораженных ядом нервных клеток. На ее пути появляется какая-то преграда, и больной может погибнуть, несмотря на то, что организм его переполнен антителами, способными обезвредить с избытком весь токсин, накопившийся в нервных клетках. Что же это за преграда?

Еще в 1885 году выдающийся немецкий микробиолог П. Эрлих обнаружил, что кислые красители, введенные в кровь животного, в мозг не попадают. Прошло немало лет, и сотрудник Эрлиха – Э. Гольдман поставил два ставших знаменитыми опыта с полуколлоидной краской «трипановый синий». Оказалось, что если эту краску ввести в кровь, то она окрашивает все органы, кроме мозга. Если же краска вводится в подмозжечковую цистерну, то окрашивается и вещество мозга. Тогда-то и возникла мысль о существовании сосудистого барьера, как бы запирающего центральную нервную систему от веществ, циркулирующих в крови.

Схематическое изображение опытов Э. Гольдмана, в которых было установлено существование преграды для веществ, идущих из крови в мозг. В опыте А краситель вводили в кровь, и мозг оставался неокрашенным. В опыте Б краситель вводили в ликвор (через так называемую подмозжечковую цистерну), мозг окрашивался, но в кровь краситель не попадал. Неодолимая для него граница гематоэнцефалического барьера показана жирной чертой.

( смотрим рисунок-схему "Опыт Гольдмана" в прикреплённых изображениях).

От опытов Эрлиха – Гольдмана до современных представлений о мозговом барьере наука прошла длинный и тернистый путь. В начале двадцатых годов нашего столетия фундаментальные работы академика Л.С. Штерн и ее сотрудников заложили учение о гематоэнцефалическом (кровемозговом) барьере.

Потом, как пишет английский ученый М. Бредбери в своей монографии «Концепция гематоэнцефалического барьера» (1983), «были времена, когда этот барьер пользовался дурной славой своего рода мифа, в который верили лишь отдельные одержимые физиологи и фармакологи. К счастью, в настоящее время положение изменилось, и я имею возможность объединить большое число экспериментальных данных, не только подтверждающих существование гематоэнцефалического барьера, но и проливающих яркий свет на его функции и ультраструктуру».

Мозговой барьер защищает центральную нервную систему от всевозможных чужеродных, ядовитых веществ, проникающих в кровь или образовавшихся в самом организме, способных повредить необычайно чувствительные нервные клетки головного и спинного мозга.

Конечно, не следует думать, что барьер является непреодолимой преградой, какой-то крепостной стеной, отделяющей центральную нервную систему от общей внутренней среды. Непроницаемость его относительна и зависит в значительной степени от количества и концентрации находящихся в крови веществ, от состояния организма, от длительности пребывания вещества в организме, от внешних воздействий и ряда других причин. Анатомические элементы, из которых складывается структура барьера, не только защищают мозг, но и регулируют его жизнедеятельность, питание, выведение продуктов обмена веществ и т.п.

Постоянство внутренней среды, в которой живет центральная нервная система человека и животных, является обязательным условием ее деятельности. Природа не случайно спрятала мозг в прочную костную коробку и защитила его от общей внутренней среды организма – крови – сложным, дифференцированным механизмом – мозговым барьером. Даже незначительные изменения в составе окружающей мозг цереброспинальной жидкости (или спинномозговая жидкость, или ликвор), небольшие колебания в поступлении кислорода либо питательных веществ к клеткам мозга оказывают подчас решающее влияние на их состояние. Отсюда и ведущее назначение гематоэнцефалического барьера – поддержание постоянства внутренней среды мозга, регуляция ее состава и биологических свойств. Он как бы оберегает мозг человека и животных от всевозможных случайностей, создает для нервных клеток постоянные условия. Поэтому точная и бесперебойная работа нейронов, а значит, умственная деятельность, психика, настроение, здоровье и болезнь во многом зависят от функционального состояния барьера.

Какова же анатомия гематоэнцефалического барьера? Над решением этого вопроса уже десятки лет бьются многие поколения экспериментаторов и теоретиков – биологов, морфологов, физиологов, медиков. И то, что еще вчера казалось загадкой, сегодня решено или близко к решению. Конечно, мозговой барьер не орган тела, подобно печени, селезенке или легким. Это совокупность анатомических элементов, которые выполняют роль преграды наряду с другими своими функциями.

Так, основная функция мозговых капилляров – доставлять к мозгу кровь, через их стенки в ткань мозга поступает питание, через них же выводятся отработанные материалы. Обмен этот идет непрерывно, но не все вещества проникают через эти стенки.

Мозговой капилляр – первая линия обороны мозга, искусно построенная, проницаемая для одних веществ, полупроницаемая для других и непроницаемая для третьих.

Вообще строение капилляров, вернее, их внутреннего слоя – эндотелия, отличается в различных тканях и органах по форме ядра, структуре его оболочки и т.п. Вещества переходят из крови в околоклеточную жидкость через мельчайшие поры (щели) между эндотелиальными клетками и сквозь некоторые истонченные участки самих клеток – так называемые окошки, или фенестры.

Стенки мозговых капилляров не имеют ни пор, ни окошек. Отдельные клетки накладываются друг на друга подобно черепицам (гребенчатое строение), и места стыковок прикрыты особыми замыкательными пластинками. Щели между клетками необычайно узкие, поэтому движение жидкости из капилляра в ткань идет в основном сквозь его стенку. Строение самих эндотелиальных клеток мозгового капилляра также отличается некоторыми особенностями. Например, они содержат богатый набор митохондрий, что указывает на высокую активность в них энергетических и обменных процессов. В то же время в клетках капилляров мозга гораздо меньше транспортных пузырьков (вакуолей), причем особенно в той их стороне, что прилегает к просвету капилляра, но на границе с нервной тканью число их несколько выше. Это указывает, что проницаемость капилляра в направлении из крови в ткани мозга ниже, чем в обратном направлении. Цитоплазматические вакуоли в клетках различных органов обычно участвуют в эвакуации ненужных частиц вещества, перенося их во внеклеточную жидкость. Обратный же процесс, когда клеточная мембрана захватывает извне частицы и отправляет их внутрь клетки, в стенках мозговых капилляров почти полностью отсутствует.

Определенную роль в осуществлении барьерной функции мозговых капилляров играет также расположенная под слоем эндотелиальных клеток прочная трехслойная базальная мембрана со слоем гликокаликса над ней. Составляющие этот слой нити и гранулы образуют своеобразную сеть, которая служит дополнительным препятствием для молекул различных веществ. Кроме того, исследования последних лет показали, что капилляры мозга содержат целый набор ферментов, способных снижать активность химических соединений, поступающих из крови в ткань мозга.

Однако одной лишь стенкой капилляров не ограничивается структура мозгового барьера. Вторая линия обороны расположена между стенкой капилляра и нейронами. Природа поставила здесь сложное сплетение звездчатых клеток (астроцитов) и их отростков (дендритов), образующих слой так называемой нейроглии. Она покрывает около 85 процентов наружной поверхности мозговых капилляров, к которой тесно прилегают присосковые ножки клеток нейроглии. Они способны растягивать просвет капилляра и суживать его. Основная их роль сводится к питанию нейронов. Присосковые ножки высасывают из крови необходимые нейронам питательные вещества и выводят обратно в кровь продукты их обмена веществ (не случайно астроциты получили название «питательных клеток» или «клеток-кормилиц»). При этом нейроглия может менять окислительный потенциал входящих в ее состав элементов, что вызывает изменение электрического заряда клеток и – соответственно – активности мозгового барьера: он становится менее проницаемым, если окислительный потенциал астроцитов повышен.

Мозговые капилляры опутаны сложным сплетением астроцитов (звездчатых клеток), их отростков-дендритов и присосковых ножек, которые проникают в эндотелий капилляров. Все вместе они образуют одну из «линий обороны» гематоэнцефалического барьера. 1 – просвет капилляра, 2 – астроциты, 3 – базальная мембрана, 4 – присосковые ножки астроцитов.

( смотрим рисунок-схему "Астроциты капилляра" в прикреплённых изображениях)

Но и нейроглией не исчерпывается заслон между кровью и мозгом. Барьерными функциями обладают также окутывающие мозг мягкие оболочки и сосудистые сплетения его боковых желудочков, принимающих активное участие в образовании цереброспинальной жидкости. Проницаемость капилляров сосудистых сплетений несколько выше, чем у капилляров мозга. Щели между эндотелиальными клетками в капиллярах сосудистых сплетений шире, хотя также замкнуты плотными контактами, обращаемыми в сторону полости мозговых желудочков. Здесь проходит третья линия обороны, третья ступень гематоэнцефалического барьера.

В целом же из этих линий образуется объединенный защитный и регуляторный механизм, подобно тому, как из отдельных органов с различным строением и назначением складываются дыхательная, пищеварительная, сердечно-сосудистая, эндокринная и другие системы. Гематоэнцефалический барьер – это мозаика приспособительных механизмов головного и спинного мозга, или, образно выражаясь, федерация автономных, но взаимосвязанных составных частей не только анатомического, но и физиологического механизма.

Боковые желудочки мозга, участвующие в образовании ликвора, – тоже часть гематоэнцефалического барьера. Здесь «линия обороны» проходит через капилляры сосудистых сплетений. 1, 2 – боковые желудочки, 3 – подмозжечковая цистерна, 4 – ликвороносные пространства головного мозга.

( смотрим рисунок-схему "Боковые желудочки мозга" в прикреплённых изображениях)