Распознавание образов и научное знание

МЕНЮ


Новости ИИ
Поиск

ТЕМЫ


Внедрение ИИНовости ИИРобототехника, БПЛАТрансгуманизмЛингвистика, рбработка текстаБиология, теория эволюцииВиртулаьная и дополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информации

АРХИВ


Июнь 2017
Май 2017
Апрель 2017
Март 2017
Февраль 2017
Январь 2017
Декабрь 2016
Ноябрь 2016
Октябрь 2016
Сентябрь 2016
Август 2016
Июль 2016
Июнь 2016
Май 2016
Апрель 2016
Март 2016
Февраль 2016
Январь 2016
0000

RSS


RSS новости
птичий грипп

Новостная лента форума ailab.ru

Последние достижения в распознавании образов впечатляют. Достаточно вспомнить результаты соревнований на базе ImageNet. Сразу же возникает вопрос, что дальше? Как мы можем использовать полученные достижения?

Что-то важное началось, когда Fei-Fei стартовала ImageNet проект. Похоже на революцию.

Меня на подсознательном уровне не отпускала одна маленькая деталь, часто упоминаемая в обсуждении соревнований ImageNet. А именно, как точно нейронные сети распознают породы собак. Есть в этом что-то, что резонирует с моей нейронной сетью. И наконец-то я тоже понял то, что многие из вас поняли давным давно. Теперь я попытаюсь сформулировать то, что я понял.

Породы собак – это довольно узкая, хорошо проработанная и очень специализированная область наших знаний. Чтобы разбираться в породах, надо видеть и запомнить очень-очень много специфических деталей. Надо знать много связанной с породами информации, к примеру историю пород, методы скрещивания, основы генетики. Надо проштудировать массу книг и постоянно отслеживать новую информацию в этой области. Причем внешность собаки, если можно сказать, ее изображение имеет решающее значение для данной области науки. Окей, согласен, разведение пород можно отнести к науке с большой натяжкой. Давайте лучше скажем — «имеет решающее значение для данной области знаний».

Недавно я работал над системой по распознаванию автомобилей и кораблей. Используя готовые модели, которые блистали в соревновании ImageNet, я не получил хороших результатов. Очевидно в базе ImageNet фотографий кораблей было значительно меньше, чем фото собак.

Где можно найти фото кораблей? Собраны ли эти фотографии в каких-нибудь базах или реестрах? Может и собраны, но найти их я не смог. Еще один маленький вопрос опустился в мою нейронную сеть и не давал спокойно спать.

Пару дней назад я опять наткнулся на популярную базу изображений для новичков, на базу цветков ириса. Что-то щелкнуло в мозгу и стало укладываться в модель.

Имеющиеся базы знаний и изображений

Классификация – один из старейших научных методов. Сразу вспоминается Карл Линней с его единой системой классификации.

Изображение объекта в этих системах – одна из необходимых и главнейших частей классификации. Это, по сути, часть знаний, представление знаний.

Какие базы изображений нужны ученым, инженерам, специалистам на повседневной основе Давайте попробуем выбрать наугад:

Агрономия, растения


Медицина, бактерии


Рыболовство, рыбы


Геология, руды


Биология, насекомые


И так далее и тому подобное. Как только попытаешься копнуть, окажется, что буквально везде мы имеем дело с изображениями и буквально везде мы принимаем решения на основе изображений.

Необходимость баз данных изображений

Изображения объектов используются практически везде. Понятно, что работа по распознаванию объектов ускорилась и улучшилась, если бы мы могли везде и всегда использовать системы распознавания, вместо того, чтобы вручную искать объекты в горе книг или приглашать экспертов.

Изображения есть. Но они разбросаны по книгам и коллекциям. Они не представлены в формате, удобном для автоматической обработки. И их мало. Их явно недостаточно для тренировки хорошей системы распознавания.

Модель

Пришла пора представить вам мою модель. Мне стыдно, что до меня так долго доходили всем и так понятные вещи. Я понимаю, что ничего нового в этой модели нет. Но сочинение этого текста помогло мне сформулировать проблему. Поэтому я взял на себя смелость отдать этот текст вам на обсуждение.

Специализированные базы изображений

Любая область науки и инженерии, имеющая дело с видимыми объектами, получит очевидные преимущества, создав базу изображений (или базы).

Специализированные модели распознавания изображений

Любая область науки и инженерии, имеющая дело с видимыми объектами, получит очевидные преимущества, создав свои системы распознавания изображений.

Комбинация специализированных систем распознавания

Ясно, что готовые специализированные системы распознавания надо научиться встраивать, комбинировать.

Готовая система для создания баз изображений

И может быть, имеет смысл сделать готовую систему, библиотеку для создания баз изображений. Чтобы было удобно, к примеру, импортировать изображения, размечать их. Но может быть мы сможем обойтись чем-нибудь более простым, типа Amazon Mechanical Turk?

Помечтаем

Как бы упростился мой последний проект, если бы я имел доступ не только к моделям ImageNet, но и к готовым моделям распознавания кораблей, катеров, каяков, гидросамолетов, грузовиков, легковых машин, велосипедов. Если бы все эти модели можно было легко скомбинировать. Если говорить в общем, то создание специализированных систем распознавания помогло бы формализовать знания в отношении видимой стороны сущностей. Узко специализированные знания можно будет распространять и использовать быстро, дешево и эффективно. Экспертные оценки можно будет получить, используя смартфон с камерой.

Источник: habrahabr.ru