Видеокурс от Facebook по искусственному интеллекту

МЕНЮ


Новости ИИ
Поиск

ТЕМЫ


Внедрение ИИНовости ИИРобототехника, БПЛАТрансгуманизмЛингвистика, рбработка текстаБиология, теория эволюцииВиртулаьная и дополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информации

АРХИВ


Июнь 2017
Май 2017
Апрель 2017
Март 2017
Февраль 2017
Январь 2017
Декабрь 2016
Ноябрь 2016
Октябрь 2016
Сентябрь 2016
Август 2016
Июль 2016
Июнь 2016
Май 2016
Апрель 2016
Март 2016
Февраль 2016
Январь 2016
0000

RSS


RSS новости
птичий грипп

Новостная лента форума ailab.ru

В этой статье мы собрали подборку полезных видеоуроков для интересующихся искусственным интеллектом от компании Facebook.

искусственным интеллектом

Математика, математика. О, пожалуй, ещё немного математики.
В этом вся суть совета для студентов, интересующихся искусственным интеллектом, от Янна ЛеКун и Жакуин Канделы, которые уверенно управляют отделом искусственного интеллекта и машинного обучения в Facebook. Технологические компании часто пропагандируют НТИМ (наука, технология, инженерия и математика) (англ.: STEM — science, technology, engineering and math), но сегодня нам наглядно объясняют некоторые вещи. Эти двое (Янн ЛеКун и Жакуин Кандела) подчеркивают, что студентам стоит есть больше овощей как можно быстрее пройти Calc I, Calc II, Calc III (курсы по математическому анализу — прим. переводчика), линейную алгебру, теорию вероятностей и статистику. В этом списке наиболее интересными являются теория вероятностей и статистика. Если разные уравнения символизируют электричество, которое поддерживает машину, имеющую возможность обучаться, то статистика олицетворяет механизм машины как таковой. Это и показывают нам в видео, прикрепленных ниже.

Скорее всего, Янн ЛеКун и Жакуин Кандела обращались к тем, кто учится в высшем учебном заведении, хотя очень важно учитывать стимулы к развитию на всех этапах образования. Мы могли бы просто использовать больше статистики в нашей жизни. Помимо математики, нам говорят, очень важно знать еще больше математики инженерию, компьютерные науки, экономику и нейронауки. Как же еще неопытный юнец, изучающий машинное обучение, научится использовать нейроэкономику и когнитивное искажение для таргетинга объявлений? Эта парочка также делает упор на тему философии в качестве необходимой предпосылки для понимания знаний и изучения. Очень важно помнить, что за каждым приложением, основанном на машинном обучении, стоит человек. Мы так и не знаем, как избежать проблему черного ящика, но мы знаем, что за этим всем тоже будет стоять человек, трудящийся, чтоб выяснить, как это работает, и, понятное дело, было бы гораздо лучше, если бы этот человек понимал, как работает обучение, перед тем, как он начнет управлять данными.

В конце концов, Facebook обращает внимание на сам способ получения работы в сфере машинного обучения. Большинство этих советов очевидны: найди учителя и работай с ним, работайте со студентами, получающими докторскую степень, у которых есть больше времени, и попытайтесь обеспечить себе интернатуру независимо от ваших будущих устремлений, чтобы понять, как работает искусственный интеллект в жизни.

Когда будете получать докторскую степень, поймите, что гораздо важнее работать с «правильным» профессором, чем проходить «правильную» программу. Студентам стоит работать, чтоб решить конкретную проблему и постараться выложить часть своего кода в открытый доступ ещё перед тем, как всё будет готово.

Введение в ИИ

AI Education — Introduction to AI

Posted by Facebook Engineering on Monday, November 28, 2016

Машинное обучение

AI Education — Machine Learning

Posted by Facebook Engineering on Monday, November 28, 2016

Градиентный спуск

AI Education — Gradient Descent

Posted by Facebook Engineering on Monday, November 28, 2016

Глубинное обучение

AI Education — Deep Learning

Posted by Facebook Engineering on Monday, November 28, 2016

Метод обратного распространения ошибки

AI Education — Back Propagation

Posted by Facebook Engineering on Monday, November 28, 2016

Сверточные нейронные сети

AI Education — Convolutional Neural Nets

Posted by Facebook Engineering on Monday, November 28, 2016

Перевод: Роман Мирзоян
Оригинал статьи можете найти здесь.


Источник: proglib.io