Машинное обучение справилось с исправлением ошибок в квантовых компьютерах

МЕНЮ


Новости ИИ
Поиск

ТЕМЫ


Внедрение ИИНовости ИИРобототехника, БПЛАТрансгуманизмЛингвистика, рбработка текстаБиология, теория эволюцииВиртулаьная и дополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информации

АРХИВ


Июнь 2017
Май 2017
Апрель 2017
Март 2017
Февраль 2017
Январь 2017
Декабрь 2016
Ноябрь 2016
Октябрь 2016
Сентябрь 2016
Август 2016
Июль 2016
Июнь 2016
Май 2016
Апрель 2016
Март 2016
Февраль 2016
Январь 2016
0000

RSS


RSS новости
птичий грипп

Новостная лента форума ailab.ru

 

Слева — этап измерений эволюции кубита, справа — предсказания шума в системе и реальные параметры приложенного шума (бирюзовый). n — количество измерений

Sandeep Mavadia et al. / Nature Communications, 2017

Физики из Университета Сиднея разработали метод исправления «квантовых ошибок» с помощью машинного обучения. Алгоритм предсказывает эволюцию квантового состояния и его распада и управляет его состоянием, чтобы избежать декогеренции. Методика позволит увеличить время жизни кубитов квантовых компьютеров и увеличить надежность систем на их основе. Исследование опубликовано в журнале Nature Communications.

В основе квантовых компьютеров лежат квантовые аналоги битов — кубиты. Эти элементы находятся в когерентных состояниях (в суперпозиции состояний), принимая с некоторой долей вероятности значение «ноль» или «единица». Однако это состояние очень хрупкое и взаимодействия кубита с окружающей средой разрушают его, происходит декогеренция и в результате вместо суперпозиции двух состояний кубит оказывается в одном конкретном. Если декогеренция произойдет в ходе вычислений (например, разложения числа на простые множители), то помимо правильных разложений с некоторой вероятностью будут выпадать ошибочные множители.

Проблему декогеренции кубитов как правило решают с помощью пассивных методов — усовершенствованием изоляции или топологической защитой квантовых состояний. Также существует активный подход. Его можно описать следующим образом: в каждый момент времени наблюдатель следит за квантовым состоянием кубита и если оно начинает распадаться, то с помощью системы обратной связи к нему прикладывается некоторое обращающее декогеренцию воздействие — обратная связь. Проблема активного подхода состоит в необходимости наблюдать за квантовой системой. В квантовой механике операция измерения (наблюдения) также разрушает когерентность.

Авторы новой работы попытались обойти эту проблему, используя методы управления с предсказанием. Физики использовали методы машинного обучения с учителем для поиска корреляций в квантовом шуме и процессах декогеренции. Проверка методики происходила на ионах иттербия, захваченных в оптическую ловушку. Ионы могли находиться в двух электронных состояниях, близких по энергии — условно «ноль», или «единица».

Обучение состояло из большого количества циклов из двух этапов. На первом этапе эволюция состояния кубитов отслеживались с помощью прямых измерений. На втором этапе доступ к кубиту для измерений прерывался, система начинала работать в предсказательном режиме, используя собранные данные. Система пыталась корректировать воздействия внешнего шума. После этого цикл вновь начинался с этапа отслеживания. 


Схема эксперимента. Ниже — результаты предсказательного контроля, ошибки в первом цикле снижаются примерно на 70 процентов, во втором — на 85.

Sandeep Mavadia et al. / Nature Communications, 2017

Чтобы оценить эффективность методики авторы использовали заранее известный шум, по своей интенсивности превышающий все другие возможные шумы системы. Однако информация о «запрограммированности» шума была недоступна для алгоритмов обучения. В результате физики зафиксировали снижение уровня ошибок в кубите. Ученые отмечают, что метод не требует дополнительных квантовых систем для анализа и может быть применен для любых архитектур кубитов. 

Ранее IBM сообщила о создании четырехкубитных чипов с автоматическим детектированием ошибок двух типов: декогеренции и смены бита (bit-flip) (изменяющей состояние кубита на противоположное). В их основе лежат сверхпроводящие кубиты. Задача о коррекции квантовых ошибок в кубитных чипах решена для ошибок типа смены бита.

Владимир Королёв


Источник: nplus1.ru