Создайте свои собственные “Нейронные Картины” с помощью Глубокого Обучения

МЕНЮ


Новости ИИ
Поиск

ТЕМЫ


Внедрение ИИНовости ИИРобототехника, БПЛАТрансгуманизмЛингвистика, рбработка текстаБиология, теория эволюцииВиртулаьная и дополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информации

АРХИВ


Июнь 2017
Май 2017
Апрель 2017
Март 2017
Февраль 2017
Январь 2017
Декабрь 2016
Ноябрь 2016
Октябрь 2016
Сентябрь 2016
Август 2016
Июль 2016
Июнь 2016
Май 2016
Апрель 2016
Март 2016
Февраль 2016
Январь 2016
0000

RSS


RSS новости
птичий грипп

Новостная лента форума ailab.ru

Нейронные сети могут делать много разных вещей. Они могут понимать наши голоса, распознавать изображения и переводить речь, но знаете ли вы, что еще они умеют рисовать? Изображение сверху демонстрирует некоторые сгенерированные результаты применения нейронного рисования.

Сегодня я собираюсь познакомить вас с тем как это делается. Прежде всего, убедитесь, что у вас обновленная копия Ubuntu (14.04 — та, что использовал я). Вам необходимо иметь несколько гигов свободного пространства на жестком диске и в оперативной памяти, хотя бы не менее 6 GB (больше оперативки для больших выводимых разрешений). Для запуска Ubuntu как виртуальной машины, вы можете использовать Vagrant вместе с VirtualBox.

Убедитесь, что у вас установлен git. Чтобы скачать и установить git, просто откройте терминал и выполните:

$ sudo apt-get install git 


Шаг 1: Установите torch7

Torch — это фреймворк для научных вычислений с широкой поддержкой алгоритмов машинного обучения. Torch является главным пакетом Torch7, где определены структуры данных для многомерных тензоров и математические операции для них. Дополнительно, он предоставляет много утилит для доступа к файлам, сериализации объектов произвольных типов и другие полезные утилиты.

Запустите эти команды в терминале (вам может понадобиться использовать для них sudo):

$ cd ~/ $ curl -s https://raw.githubusercontent.com/torch/ezinstall/master/install-deps | bash $ git clone https://github.com/torch/distro.git ~/torch --recursive $ cd ~/torch; ./install.sh 

Теперь нам надо обновить наши переменные окружения, запустите:

$ source ~/.bashrc 


Шаг 2: Установите loadcaffe

Выполните в терминале:
$ sudo apt-get install libprotobuf-dev protobuf-compiler $ luarocks install loadcaffe 

Либо, если у вас возникают проблемы, попробуйте так:

$ git clone git@github.com:szagoruyko/loadcaffe.git $ ~/torch/install/bin/luarocks install loadcaffe/loadcaffe-1.0–0.rockspec 


Шаг 3: Установите neural-style

Это torch-реализация спецификации Нейронный Алгоритм Художественного Стиля Леона А. Гатиса, Александра С. Эккера и Маттиаса Бетге. Спецификация представляет алгоритм для комбинирования контента одного изображения со стилем другого изображения, используя сверточные нейронные сети.

Сначала склонируйте neural-style с GitHub:

$ cd ~/ $ git clone https://github.com/jcjohnson/neural-style.git 

Далее, скачайте модели нейронной сети:

$ cd neural-style $ sh models/download_models.sh 


Шаг 4: Запускаем

Теперь убедитесь, что у вас есть хотя бы 6 GB оперативной памяти (если вы используете виртуальную машину, убедитесь, что выделили достаточное количество памяти для нее). Затем проверьте, работает ли нейронный стиль с помощью этой команды:
$ th neural_style.lua -gpu -1 -print_iter 1 

Заметьте, что вы выполняете это в режиме CPU, выполнение в режиме GPU выходит за рамки данной статьи.

Чтобы увидеть инструкции о том, как использовать нейронный стиль, запустите:

$ th neural_style.lua ? 

Теперь давайте выполним тестовую команду, чтобы убедиться, что нейронные стили работают. Для начала убедитесь, что вы находитесь в директории нейронных сетей, если вы следовали всем инструкциям выше, вы должны быть в ~/neural-network, теперь запустите:

th neural_style.lua -style_image examples/inputs/starry_night.jpg -content_image examples/inputs/golden_gate.jpg -gpu -1 -image_size 256 

Заметьте, я ввел меньший размер изображения, чтобы обработка закончилась быстрее. Когда команда завершится, выходной файл, со стандартным именем out.png, будет расположен в той же директории.

Результат


golden_gate.jpg


starry_night.jpg


out.png

Источник: habrahabr.ru