Создайте свои собственные “Нейронные Картины” с помощью Глубокого Обучения

МЕНЮ


Новости ИИ
Поиск

ТЕМЫ


Big data
Беспилотные автомобили
БПЛА
генетические алгоритмы
Головной мозг
городские сумасшедшие
дополнительная реальность
ИИ проекты
интернет вещей
искусственный интеллект
ИТ-гиганты
квантовые компьютеры
кибербезопасность
Кластеризация
Машинное обучение
наука и образование
нейронные процессоры
нейронные сети
Нейронные сети: искусственные
Нейронные сети: реализация
облачные вычисления
Поведение животных
Поисковые алгоритмы. Ранжирование
Психология
распознавание образов
робототехника
Семинары
суперкомпьютеры
Теория эволюции
техническое зрение
Трансгуманизм
Чат-боты

АРХИВ


Декабрь 2016
Ноябрь 2016
Октябрь 2016
Сентябрь 2016
Август 2016
Июль 2016
Июнь 2016
Май 2016
Апрель 2016
Март 2016
Февраль 2016
Январь 2016
Декабрь 2015
Ноябрь 2015
Октябрь 2015
Сентябрь 2015
Август 2015
Июль 2015
Июнь 2015
Май 2015
Апрель 2015
Март 2015
Февраль 2015
Январь 2015
Декабрь 2014
Ноябрь 2014
Октябрь 2014
Сентябрь 2014
Август 2014
Июль 2014
Июнь 2014
Май 2014
Апрель 2014
Март 2014
Февраль 2014
Январь 2014
Декабрь 2013
Ноябрь 2013
Октябрь 2013
Сентябрь 2013
Август 2013
Июль 2013
Июнь 2013
Май 2013
Апрель 2013
Март 2013
Февраль 2013
Январь 2013
Декабрь 2012
Ноябрь 2012
Октябрь 2012
Сентябрь 2012
Июль 2012
Июнь 2012
Май 2012
Апрель 2012
Март 2012
Февраль 2012
Январь 2012
Декабрь 2011
Ноябрь 2011
Октябрь 2011
Сентябрь 2011
Август 2011
Май 2011

RSS


RSS новости
свиной грипп
new balance кроссовки

Новостная лента форума ailab.ru

Нейронные сети могут делать много разных вещей. Они могут понимать наши голоса, распознавать изображения и переводить речь, но знаете ли вы, что еще они умеют рисовать? Изображение сверху демонстрирует некоторые сгенерированные результаты применения нейронного рисования.

Сегодня я собираюсь познакомить вас с тем как это делается. Прежде всего, убедитесь, что у вас обновленная копия Ubuntu (14.04 — та, что использовал я). Вам необходимо иметь несколько гигов свободного пространства на жестком диске и в оперативной памяти, хотя бы не менее 6 GB (больше оперативки для больших выводимых разрешений). Для запуска Ubuntu как виртуальной машины, вы можете использовать Vagrant вместе с VirtualBox.

Убедитесь, что у вас установлен git. Чтобы скачать и установить git, просто откройте терминал и выполните:

$ 
sudo apt-get install git 


Шаг 1: Установите torch7

Torch — это фреймворк для научных вычислений с широкой поддержкой алгоритмов машинного обучения. Torch является главным пакетом Torch7, где определены структуры данных для многомерных тензоров и математические операции для них. Дополнительно, он предоставляет много утилит для доступа к файлам, сериализации объектов произвольных типов и другие полезные утилиты.

Запустите эти команды в терминале (вам может понадобиться использовать для них sudo):

$ 
cd ~/ $ curl -s https://raw.githubusercontent.com/torch/ezinstall/master/install-deps | bash $ git clone https://github.com/torch/distro.git ~/torch --recursive $ cd ~/torch; ./install.sh 

Теперь нам надо обновить наши переменные окружения, запустите:

$ 
source ~/.bashrc 


Шаг 2: Установите loadcaffe

Выполните в терминале:
$ 
sudo apt-get install libprotobuf-dev protobuf-compiler $ luarocks install loadcaffe 

Либо, если у вас возникают проблемы, попробуйте так:

$ 
git clone git@github.com:szagoruyko/loadcaffe.git $ ~/torch/install/bin/luarocks install loadcaffe/loadcaffe-1.0–0.rockspec 


Шаг 3: Установите neural-style

Это torch-реализация спецификации Нейронный Алгоритм Художественного Стиля Леона А. Гатиса, Александра С. Эккера и Маттиаса Бетге. Спецификация представляет алгоритм для комбинирования контента одного изображения со стилем другого изображения, используя сверточные нейронные сети.

Сначала склонируйте neural-style с GitHub:

$ 
cd ~/ $ git clone https://github.com/jcjohnson/neural-style.git 

Далее, скачайте модели нейронной сети:

$ 
cd neural-style $ sh models/download_models.sh 


Шаг 4: Запускаем

Теперь убедитесь, что у вас есть хотя бы 6 GB оперативной памяти (если вы используете виртуальную машину, убедитесь, что выделили достаточное количество памяти для нее). Затем проверьте, работает ли нейронный стиль с помощью этой команды:
$ 
th neural_style.lua -gpu -1 -print_iter 1 

Заметьте, что вы выполняете это в режиме CPU, выполнение в режиме GPU выходит за рамки данной статьи.

Чтобы увидеть инструкции о том, как использовать нейронный стиль, запустите:

$ 
th neural_style.lua ? 

Теперь давайте выполним тестовую команду, чтобы убедиться, что нейронные стили работают. Для начала убедитесь, что вы находитесь в директории нейронных сетей, если вы следовали всем инструкциям выше, вы должны быть в ~/neural-network, теперь запустите:


th neural_style.lua -style_image examples/inputs/starry_night.jpg -content_image examples/inputs/golden_gate.jpg -gpu -1 -image_size 256 

Заметьте, я ввел меньший размер изображения, чтобы обработка закончилась быстрее. Когда команда завершится, выходной файл, со стандартным именем out.png, будет расположен в той же директории.

Результат


golden_gate.jpg


starry_night.jpg


out.png

Источник: habrahabr.ru



кроссовки нью баланс