Дофамин — Вячеслав Дубынин

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Одним из важнейших медиаторов центральной нервной системы является вещество, называющееся дофамин. Дофамин известен достаточно давно, где-то с середины XX века. Это соединение, специфично связанное с мозгом, прежде всего с головным, в отличие, например, от ацетилхолина, норадреналина, которые активны в периферической нервной системе.

Дофамин образуется в наших нейронах в результате довольно несложной цепочки химических реакций. Начинается она с аминокислоты, которая называется тирозин, и дальше тирозин превращается в молекулу, называемую L-ДОФА, а уже L-ДОФА становится дофамином. То есть получается цепочка из двух реакций, причем L-ДОФА в данной цепочке является предшественником дофамина, что дальше определяет использование молекулы L-ДОФА как лекарственного препарата, но об этом чуть позже.

Дофамин действительно очень важен для центральной нервной системы, и если мы начинаем анализировать строение мозга, то обнаруживаем дофаминовые нейроны в основном в трех зонах: это гипоталамус и две области среднего мозга, одна называется черная субстанция, а вторая — вентральная покрышка. Если мы смотрим на гипоталамус, то видим, что у дофаминовых нейронов гипоталамуса довольно короткие отростки-аксоны. Они в основном занимаются внутригипоталамическими проблемами и воздействуют на выброс некоторых гормонов или на центры некоторых потребностей, немного участвуют в вегетативной регуляции, но в общем это довольно локальные функции, хотя, конечно, важные. Например, в гипоталамусе дофамин может понижать пищевую мотивацию, повышать агрессивность или усиливать либидо, то есть это локальные, но важные моменты.

Наиболее известны те дофаминовые нейроны, которые находятся как раз в черной субстанции и вентральной покрышке. Черная субстанция потому так и названа, что эта зона мозга имеет темную окраску: нейроны там содержат некоторое количество меланина — темного пигмента. Аксоны этих клеток идут вверх, в большие полушария, и в основном они заканчиваются в базальных ганглиях. Данный блок дофаминовой системы связан с регуляцией двигательной активности: от того, насколько много дофамина выделяет черная субстанция, во многом зависит, насколько человек физически активен, моторен, любит двигаться, охотно двигается. Люди с активной черной субстанцией с удовольствием занимаются спортом, танцуют и вообще перемещаются в пространстве. Люди, у которых черная субстанция не очень активна (а это в основном зависит от генов), соответственно, двигательно более ленивы и не получают столько удовольствия от физических упражнений, но они получают удовольствие от чего-то другого: от еды или новизны — во всяком случае, окружающие их порой воспринимают как лентяев.

Если мы смотрим, куда конкретно приходят аксоны черной субстанции в больших полушариях, то это зона, называемая базальные ганглии. Это очень непростая область, находящаяся в глубине больших полушарий. Когда мы говорим о больших полушариях, мы прежде всего вспоминаем кору, зону, которая находится на поверхности полушарий и содержит огромное количество нервных клеток с самыми разными функциями. Но в глубине больших полушарий есть крупные скопления нейронов, которые в свое время и были названы базальными ганглиями. И там расположена масса анатомических структур: полосатое тело, бледный шар, скорлупа, ограда. У всех них сложные латинские названия, но если в целом смотреть на базальные ганглии, то видно, что где-то 80% нейронов в этой группе структур занимаются движениями. Именно на активность этих нейронов и влияет черная субстанция. Остальные 20% базальных ганглий входят в другую систему, связанную с потребностями, мотивациями, эмоциями, и об этом блоке я еще скажу.

Та зона, которая занимается движениями и связана с черной субстанцией, к сожалению, порой подвержена весьма характерному заболеванию, называющемуся паркинсонизм (болезнь Паркинсона). Проблема в том, что нейроны черной субстанции оказались очень «нежными», то есть среди множества нейронов нашего мозга клетки черной субстанции, пожалуй, наиболее подвержены нейродегенерации. С возрастом часть нейронов в этой области накапливает у себя в цитоплазме патологически неправильные белки (они называются паркины) и начинает выходить из строя. По мере того как черная субстанция чувствует себя все хуже и хуже, поток дофамина в базальные ганглии становится все меньше, и довольно долго базальные ганглии с этим успешно борются, прежде всего наращивая количество дофаминовых рецепторов.

В какой-то момент уже не хватает ресурса, и начинается проявляться паркинсоническая симптоматика: дрожание рук (тремор), появляется напряжение мышц (ригидность), человеку трудно запускать движения (акинезия). Это достаточно тяжелое двигательное расстройство, которое, естественно, мы пытаемся как-то лечить. Основной препарат, здесь помогающий, — это как раз L-ДОФА, предшественник дофамина. Это вещество можно давать в виде таблеток, с его помощью можно достаточно долго помогать человеку с паркинсонизмом и купировать эту симптоматику, хотя, к сожалению, введение этого вещества не останавливает нейродегенерацию, то есть она продолжается, поэтому дозу приходится постоянно наращивать в течение десяти, пятнадцати, порой даже двадцати лет.

Вторая область — вентральная покрышка. Аксоны этой зоны идут в кору больших полушарий и в ту часть базальных ганглий, которая занимается как раз потребностями, мотивациями и эмоциями. Дофамин, вырабатывающийся нейронами вентральной покрышки, в коре больших полушарий, во многом определяет скорость обработки информации и, если угодно, скорость нашего мышления. Если много дофамина в этой системе и вентральная покрышка будет достаточно активна, то мы видим, что информационные процессы идут быстро, у человека быстрый мозг. Такие люди могут очень успешно заниматься математикой, программированием и вообще профессиями, связанными с абстрактным мышлением.

Кроме того, этот же блок дает нам положительные эмоции, связанные с новизной. Это очень важная составляющая нашей психической жизни, потому что наш мозг очень любопытен и получение новой информации биологически очень важно: мы должны знать, что меняется в окружающем мире, оперативно эти изменения детектировать и анализировать. Кроме того, нас это радует, и для человека, занимающегося наукой или искусством, это важнейшая составляющая психической жизни, потому что что-то сочинить или открыть — это просто замечательно. Получается, что дофамин связан с положительными эмоциями, которые коррелируют с новизной, творчеством, юмором, потому что шутка — это тоже некая рассказанная ситуация, в которой был банальный выход, а вам предложили что-то необычное, какую-то небанальную соль анекдота, и вы смеетесь — это тоже выделение дофамина.

К сожалению, эта система тоже может работать не очень правильно. Если она работает слабо по каким-то причинам (в основном генетическим), то человек недобирает положительных эмоций, связанных с новизной, и это может быть одним из компонентов депрессии. Если эта система работает слишком сильно, то мышление может стать избыточно быстрым, дерганным, человек не может сосредоточиться и долго думать одну и ту же мысль. Порой сенсорные системы начинают генерировать сигналы в тот момент, когда нет никаких реальных раздражителей. В пределе это выливается в симптоматику, которая называется шизофренией. К сожалению, шизофрения является весьма распространенным заболеванием: от 0,5 до 1% населения страдают этим заболеванием. В этом случае нужны препараты, ослабляющие активность дофаминовой системы. Такие препараты существуют, они относятся к группе нейролептиков и являются блокаторами дофаминовых рецепторов.

У дофамина довольно много рецепторов, выделено пять основных типов. Если смотреть на разные отделы мозга, мы прежде всего обнаруживаем рецепторы D-2, тормозящие различные нервные процессы. И довольно много рецепторов D-1, то есть дофаминовых рецепторов первого типа, которые активируют различные нервные процессы. В некоторых нейросетях рецепторы D-1 и D-2 вставлены как конкурирующие блоки, рецепторы D-2 ограничивают активность D-1. Это очень хорошо наблюдается в базальных ганглиях. Если мы начинаем использовать антагонистов дофаминовых рецепторов, то степень выраженности их эффектов зависит от того, на какие рецепторы мы попадаем.

История нейролептиков начинается с вещества, которое называется аминазин. Аминазин — грубый нейролептик, воздействующий не только на все типы дофаминовых рецепторов, но и на рецепторы норадреналина. Тем не менее аминазин в истории психиатрии стал важнейшим препаратом, с помощью которого впервые удалось на фармакологическом уровне купировать и тяжелую шизофрению, и тяжелые маниакальные расстройства. В 1960-е годы стали создавать более избирательно действующие препараты, в основном блокирующие активность рецепторов D-2. Современные нейролептики являются именно блокаторами рецепторов D-2 разной степени эффективности, потому что более востребованы препараты более мягкого действия. К счастью, легкая шизофрения встречается чаще, чем тяжелая, даже с точки зрения фармакологического рынка гораздо важнее производить легкие нейролептики: они имеют гораздо более широкую сферу распространения.

Основной мишенью действия нейролептических препаратов оказывается кора больших полушарий и та часть базальных ганглиев, которая связана с эмоциями, потребностями, мотивацией. В базальных ганглиях есть две структуры: одна называется миндалина (она находится в глубине височных долей), а вторая структура — nucleus accumbens (переводится как ‘прилежащее ядро прозрачной перегородки’). Эти две структуры являются важнейшими мишенями для нейролептиков, а nucleus accumbens очень активно изучается как ключевой центр, связанный с генерацией положительных эмоций. У нас большинство информационных потоков, связанных с тем, что наш организм успешно выполнил какую-то деятельность: поел или избежал опасности, узнал что-то новое или успешно размножился, — идут через nucleus accumbens, и дальше сигналы от этой структуры, поднимаясь в кору больших полушарий, определяют процессы обучения и формирования памяти. Поэтому эта зона очень активно изучается, и дофамин там важнейший медиатор.

Если используются агонисты дофаминовых рецепторов, то можно получить активацию и процессов мышления, и центров положительных эмоций, в том числе nucleus accumbens. Известны подобного рода препараты, они относятся к группе психомоторных стимуляторов. Классическим психомоторным стимулятором является амфетамин — вещество, открытое еще в начале XX века, прошедшее сложную историю. Его пытались использовать как препарат, вызывающий похудание, и как психомоторный стимулятор, и как спортивный допинг. В настоящее время он является запрещенным наркотиком и одновременно иногда используется в клинике при тяжелых депрессиях. К этой же категории относится очень мощный и опасный наркотический препарат, который называется кокаин. Он тоже очень сильно увеличивает активность дофаминовой системы и очень быстро вызывает формирование привыкания и зависимости, серьезно меняя состояние нейронных сетей и особенно центров положительных эмоций, например nucleus accumbens.

Автор: Вячеслав Дубынин — доктор биологических наук, профессор кафедры физиологии человека и животных биологического факультета МГУ, специалист в области физиологии мозга


Источник: postnauka.ru

Комментарии: