В любой сложной ситуации лети вправо. Почему птицы не сталкиваются в полёте

МЕНЮ


Новости ИИ
Поиск

ТЕМЫ


Внедрение ИИНовости ИИРобототехника, БПЛАТрансгуманизмЛингвистика, рбработка текстаБиология, теория эволюцииВиртулаьная и дополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информации

АРХИВ


Июль 2017
Июнь 2017
Май 2017
Апрель 2017
Март 2017
Февраль 2017
Январь 2017
Декабрь 2016
Ноябрь 2016
Октябрь 2016
Сентябрь 2016
Август 2016
Июль 2016
Июнь 2016
Май 2016
Апрель 2016
Март 2016
Февраль 2016
Январь 2016
0000

RSS


RSS новости
птичий грипп

Новостная лента форума ailab.ru


Местоположение самолётов в реальном времени

С каждым годом в небе всё больше самолётов: по данным FlightRadar24, прямо сейчас в воздухе находятся 12 385 судов, и это без учёта военных. Через несколько лет к ним могут присоединиться тысячи беспилотных почтовых дронов для доставки товаров и посылок.

В такой ситуации возникает вопрос: как обеспечить безопасность воздушных полётов? Существует ли способ создать автоматическую систему ухода от столкновений, чтобы она действовала на всех пилотируемых и беспилотных судах? Что ж, в разработке эффективных навигационных систем авиационная промышленность может многому научиться у птиц и насекомых. Птицы освоили навигацию в воздухе 150 миллионов лет назад, а насекомые - 350 миллионов лет назад. У них большая фора в области НИОКР.

Очевидно, за долгое время эволюции птицы и насекомые выработали определённые алгоритмы для ухода от столкновений в полёте. Учёные предполагают, что такие алгоритмы должны быть более эффективными именно у птиц, потому что их корпус не укреплён экзоскелетом, как у насекомых. Птицы тяжелее, чем насекомые, и летают на более высоких скоростях. У них хрупкие тела. Очевидно, что столкновение в полёте будет для птиц весьма болезненным. Такая птица с меньшей вероятностью оставит потомство. То есть система ухода от столкновений в полёте - явно благоприятный признак в естественном отборе.

В предыдущие годы учёные исследовали, как птицы уходят от препятствий, пролетают в узкие щели и держат дистанцию в стае. Но ещё никогда не исследовался вопрос: что происходит, когда две птицы летят на встречных курсах. Как они поступают в таком случае?

Профессор Мандиам Сринивазан (Mandyam Srinivasan) из Университета Квинсленда (Австралия) поставил задачу изучить, какие именно стратегии применяют птицы для избежания столкновения на встречных курсах. Для этого с двух сторон туннеля длиной 21,6 метра выпускались пары птиц навстречу другу. Представляющие интерес потенциальные действия птиц принимались за гипотезы в байесовской сети для вычисления их вероятности. Предсказанные вероятности сравнивалась с наблюдаемыми фактами. Таким образом исследователи делали выводы о стратегиях ухода от столкновений, которые действуют у птиц.


Испытательный туннель. Синими и красными пунктирными линиями показаны поля зрения камер наблюдения

Перед началом испытаний 10 волнистых попугайчиков (Melopsittacus undulatus) мужского пола были обучены пролетать туннель от начала до конца в одиночку.

 


Дронго, один из десяти волнистых попугайчиков, принимавших участие в исследовании

За 4 дня было записано 102 экспериментальных полётов 7 пар, составленных из 10 волнистых попугайчиков. Не было зафиксировано ни одного столкновения. Затем провели анализ видеозаписей с фиксацией, каким образом птицы смещались в стороны или по высоте при приближении друг к другу.

Результаты оказались довольно неожиданными. Как видно из таблицы, птицы показали склонность почти всегда смещаться вправо, хотя вероятность такого смещения сильно варьируется от особи к особи.

 



Это очень любопытный вывод. Проведённые ранее исследования на пчёлах показали, что пчёлы склонны смещаться влево при сближении друг с другом. Так или иначе, но склонность смещаться в какую-то определённую сторону является важным знанием. Очевидно, это знание должно быть одинаковым у всех особей в популяции. Если птицы будут при сближении смещаться в случайную сторону, то при выборе влево/вправо вероятность столкновения составит 50%.

Попугайчики в туннеле летали на разной высоте. Учёные обнаружили, что некоторые конкретные особи явно предпочитают лететь ниже/выше другой конкретной особи, что не укладывается нормальное распределение.


Предпочтение конкретной особи лететь выше или ниже другой особи

Несмотря на отдельные случаи изменения высоты полёта, в целом птицы при сближении не меняют высоту, а смещаются в горизонтальной плоскости. Чаще всего - вправо. Учёные делают вывод о наличии у волнистых попугайчиков своеобразных правил движения, зашитых на «аппаратном уровне». Вероятно, это может быть связано с разницей в левом и правом полушариях головного мозга. Так, у попугайчиков правое полушарие и левый глаз отвечают за тактические задачи, такие как обнаружение вероятного столкновения в полёте. В свою очередь, левое полушарие и правый глаз занимаются другими вещами, такими как обслуживание полёта и контроль скорости. Кстати, это одно из эволюционных преимуществ животных с разными функциями левого и правого полушарий (подробнее см. научную работу «Выживание с асимметричным мозгом: преимущества и недостатки церебральной латерализации»).

Таким образом, исследование подтвердило, что наличие самых простых общих правил позволит животным или машинам избежать столкновения.

Во-первых, нужно договориться смещаться в одну сторону. Неважно - влево или вправо, но все должны смещаться в одну сторону.

Во-вторых, выработать алгоритм изменения высоты. Один из участников движения должен смещаться вверх, а другой - вниз. Правила изменения высоты можно реализовать разными способами. Например, присвоить иерархический порядковый номер каждому отдельному самолёту. При встрече самолёт с более высоким номером в иерархии всегда смещается вверх, а с более низким - вниз. Универсальную иерархию непросто внедрить, да и она требует обмена информацией между судами перед сближением. Другой вариант - установить каждому самолёту правило случайного смещения вверх или вниз. В этом случае риск столкновения уменьшится со 100% до 50%.

Учёным пока не удалось понять, каким образом птицы выбирают направление смещения по высоте. Возможно, у них тоже действует некая иерархия.

Статья опубликована 28 сентября 2016 года в журнале PLOS One (doi: 10.1371/journal.pone.0162435).

 


Источник: geektimes.ru