«Если облучить атом светом, фотоны которого обладают подходящей энергией, можно заставить атом изменить состояние из |0> в |1> и обратно

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


«Если облучить атом светом, фотоны которого обладают подходящей энергией, можно заставить атом изменить состояние из |0> в |1> и обратно. Так мы инвертируем бит атома. Другими словами, мы выполняем логическую операцию «не». В статье «Потенциально реализуемый квантовый компьютер» (A Potentially Realizable Quantum Computer), опубликованной в 1993 г. в журнале Science , я показал, что немного более сложный набор последовательностей лазерных импульсов, чем используемый для операции «не», позволяет атомам выполнять логические операции «и», «или» и «копировать» – точно так же, как в обычных цифровых вычислениях. Каждый атом хранит один бит, и набор атомов может вычислять все, что может вычислять обычный PC или Mac.

Но атомы могут сделать намного больше, чем обычный PC или Mac. Атомы могут хранить нечто большее, чем биты; они могут хранить кубиты. В отличие от классических битов, кубиты могут находиться в квантовых суперпозициях |0> и |1>, то есть они могут быть в состоянии 0 и 1 в одно и то же время. Можно ли каким-то образом использовать эти квантовые суперпозиции для вычислений, которые не могут делать классические компьютеры? Этот вопрос впервые поднял Дэвид Дойч в середине 1980-х гг., но ответ на него был найден только в начале 1990-х.

И этот ответ – да.

Чтобы увидеть, почему квантовые компьютеры и квантовые биты могут сделать больше, чем классические компьютеры и классические биты, давайте вспомним, что делают биты в компьютере. Некоторые из них, например биты на жестком диске компьютера или в его памяти, просто хранят информацию. Например, биты в памяти моего компьютера получают и хранят этот текст, по мере того как я его печатаю. Другие биты, например биты компьютерных программ, являются инструкциями или командами. Они велят компьютеру делать то или другое. Функционирует ли бит как бит памяти или как бит команды, зависит от контекста, в котором он используется.

Рассмотрим бит, который компьютер интерпретирует как команду: 0 означает «Делай это!», а 1 означает «Делай то!» «Это» может быть, скажем, «прибавь 2 к 2», а «то» может быть «прибавь 3 к 1». Или «это» может означать «отправь электронное письмо», а «то» – «открой веб-браузер».

В отличие от классического бита, квантовый бит может содержать 0 и 1 в одно и то же время. Что делает квантовый компьютер, когда он пытается интерпретировать такой кубит как команду? Часть суперпозиции, обозначаемая нулем, говорит квантовому компьютеру: «Делай это», а часть суперпозиции, соответствующая единице, говорит: «Делай то». Как же квантовый компьютер решает, что ему делать? А никак! Он делает «то» и «это» одновременно! Как квантовый бит может хранить два значения сразу, так и квантовый компьютер может выполнять два вычисления одновременно».

«Программируя Вселенную» — Сет Ллойд

Комментарии: