Создан эффективный алгоритм распознавания пешеходов

МЕНЮ


Новости ИИ
Поиск

ТЕМЫ


Big data
Беспилотные автомобили
БПЛА
генетические алгоритмы
Головной мозг
городские сумасшедшие
дополнительная реальность
ИИ проекты
интернет вещей
искусственный интеллект
ИТ ТНК
квантовые компьютеры
кибербезопасность
Кластеризация
Машинное обучение
наука и образование
нейронные процессоры
нейронные сети
Нейронные сети: искусственные
Нейронные сети: реализация
облачные вычисления
Поведение животных
Психология
распознавание образов
робототехника
Семинары
суперкомпьютеры
Теория эволюции
техническое зрение
Трансгуманизм
Чат-боты

АРХИВ


Октябрь 2016
Сентябрь 2016
Август 2016
Июль 2016
Июнь 2016
Май 2016
Апрель 2016
Март 2016
Февраль 2016
Январь 2016
Декабрь 2015
Ноябрь 2015
Октябрь 2015
Сентябрь 2015
Август 2015
Июль 2015
Июнь 2015
Май 2015
Апрель 2015
Март 2015
Февраль 2015
Январь 2015
Декабрь 2014
Ноябрь 2014
Октябрь 2014
Сентябрь 2014
Август 2014
Июль 2014
Июнь 2014
Май 2014
Апрель 2014
Март 2014
Февраль 2014
Январь 2014
Декабрь 2013
Ноябрь 2013
Октябрь 2013
Сентябрь 2013
Август 2013
Июль 2013
Июнь 2013
Май 2013
Апрель 2013
Март 2013
Февраль 2013
Январь 2013
Декабрь 2012
Ноябрь 2012
Октябрь 2012
Сентябрь 2012
Июль 2012
Июнь 2012
Май 2012
Апрель 2012
Март 2012
Февраль 2012
Январь 2012
Декабрь 2011
Ноябрь 2011
Октябрь 2011
Сентябрь 2011
Август 2011
Май 2011

RSS


RSS новости
свиной грипп
new balance кроссовки

Новостная лента форума ailab.ru

Исследователи из Калифорнийского университета в Сан-Диего разработали алгоритм распознавания пешеходов в режиме реального времени, который в качестве исходных данных использует только изображение с камеры. Доклад был представлен на конференции ICCV 2015, которая прошла в декабре в Сантьяго. С кратким описанием содержания работы можно ознакомиться на сайте университета.

Алгоритм сначала при помощи машинного зрения отсекает части изображения, где точно нет похожих на людей объектов. Фактически изображение человека сильно отличается в размерах в зависимости от расстояния, поэтому его сложно отделить от множества других вертикальных фигур по размерам. Программа запоминает участки, в которых есть контрастные вертикальные объекты, и передает такие фрагменты изображения на обработку обученной на распознавание людей нейросети.

За счет комбинирования методов машинного зрения и машинного обучения нейросеть занимается анализом только небольших фрагментов изображения, что, обеспечивает скорость обработки информации в два-четыре кадра в секунду. При этом, по словам авторов, их алгоритм допускает в два раза меньше ошибок, чем другие системы.

По словам разработчиков, использование нейросети для обработки изображений в режиме реального времени требует серьезных вычислительных мощностей, поэтому обычно в беспилотных автомобилях используются для этих целей данные не с камеры, а с радара, лидара и других датчиков. Применение подобного алгоритма в перспективе позволяет заменить набор дорогих сенсоров обычной камерой, кроме того, это значит, что алгоритм может использоваться и в обычных автомобилях, оснащенных камерой. Кроме того, подобная система может использоваться в системах видеонаблюдения и в роботах, работающих с людьми.


Источник: nplus1.ru



кроссовки нью баланс